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Abstract

Localization has been mainly an optional feature of cellular networks since they have
been designed for communication and many location-based services have used GPS to
provide more functionalities like navigation, rescue and many more. GPS gets outstanding
accuracy in outdoor environments, but its performance drastically degrades in indoor
settings since the GPS signals hardly go through walls. However, most human activities
are concentrated in indoor environments and location-based services cannot be carried out
successfully by GPS. To overcome this limitation, wireless protocols are appealing to fulfill
indoor localization requirements while communication is ongoing. Operators, chipset
vendors and application developers are paying attention to exploiting location information
to provide new applications like augmented reality and indoor navigation. Moreover,
localization can be used for network optimization and researchers are actively investigating
it. For instance, intelligent handover can exploit location information to guess which
Access Point (AP) is the most suitable one before doing the handover. In addition,
a range of applications can exploit it as well such as Multiple-Input Multiple-Output
beamforming, millimeter-wave beam alignment, etc. For the last decade, sensing has
been appealing to not only provide location information but also context awareness. This
enables human activity and event recognition, vital sign monitoring, user identification,
mapping, imaging, etc. To ensure the good performance of these applications, accurate
and ubiquitous positioning is needed. To this end, 5G and the newest Wi-Fi protocols,
IEEE 802.11ac and 802.11ax, are becoming the key technologies to provide outstanding
indoor localization since they incorporate larger array configurations and wider channel
bandwidths than previous wireless protocols.

Researchers have made a great effort to provide indoor localization and decimeter
level of accuracy has been achieved. However, this outstanding performance has been
evaluated using a great number of APs and assuming that every AP has a clear Line-Of-
Sight (LOS) to the device. However, typical indoor wireless deployments tend to have
sparse AP densities since they are optimized for coverage and not for localization. For
instance, a Wi-Fi infrastructure usually contains one AP per room and a 5G deployment
tends to have a limited number of AP as well. Moreover, indoor environments are generally
rich in multipath components that interfere with the estimation of the direct path. This
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is particularly challenging in Non-Line-Of-Sight (NLOS) settings as obstacles can block
the direct path and a system might detect an NLOS path and not the obstructed LOS
path. As a result, the performances of state-of-the-art localization schemes drastically
degrade their accuracy in realistic deployments.

A localization algorithm that copes well with NLOS settings and wireless deployments
with sparse AP densities is needed for precise and pervasive localization. Also,
implementing and testing it in cutting edge devices is crucial to exploit the improved
hardware features of the newest wireless protocols. Therefore, this thesis aims at providing
a framework for accurate localization even in challenging scenarios. Sensing research
shares methodologies with localization since sensing applications require extracting
location information from NLOS paths as localization does from the direct path. Hence,
this thesis also aims at exploring how the proposed localization framework can be used
for sensing applications.

We start delving into wireless localization by exploring what an LTE localization
system can achieve. This is particularly beneficial since 5G and LTE will coexist for a while
until 5G provides ubiquitous coverage. Therefore, LTE needs to fulfill the localization
requirements for a range of applications if 5G is not available. To this end, we implement
and evaluate an LTE localization system for a single AP using software-defined radios.
We observe that LTE achieves a median error of 2 m in LOS cases. However, the LTE
performance drastically degrades to 4.6 m of median error in NLOS settings. These results
point out that LTE provides a positioning accuracy that complies with a great number
of location-based services in LOS. Nevertheless, applications that demand ubiquitous
localization may not be correctly carried out in NLOS settings.

To tackle the NLOS issue, we implement UbiLocate, a Wi-Fi location system
that copes well with common AP deployment densities and works ubiquitously, i.e.,
without excessive degradation under NLOS. UbiLocate demonstrates that meter-level
median accuracy NLOS localization is possible through (i) an innovative angle estimator
based on a Nelder-Mead search, (ii) a fine-grained time of flight ranging system with
nanosecond resolution, and (iii) the accuracy improvements brought about by the increase
in bandwidth and number of antennas of IEEE 802.11ac. In combination, they provide
superior resolvability of multipath components, significantly improving location accuracy
over prior work. We implement our location system on off-the-shelf 802.11ac devices. Our
experimental evaluation shows an overall improvement of the localization performance by
a factor of 2-3.

The latest generation of Wi-Fi standards, IEEE 802.11ax, brings new hardware
capabilities that improve the performance of localization and sensing systems. In
particular, the 160MHz of channel bandwidth and the four times denser spectrum
significantly improve the resolvability of the multipath components compared to its
predecessor, IEEE 802.11ac. We present the first tool to collect the most accurate
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CSI ever from off-the-shelf devices. To further validate the platform, we carry out
a preliminary measurement campaign to compare the localization accuracy of IEEE
802.11ax with 802.11ac. Our results show that, as expected, IEEE 802.11ax provides
superior performance improving the accuracy by a factor of 1.75 for LOS and NLOS
settings.

Sensing research goes beyond localization since it aims at providing context awareness.
We explore the integration of the proposed multipath decomposition algorithm as well
as the testbed for sensing applications. In particular, we tackle human respiration rate
estimation since it is appealing as it does not require any specialized hardware. Our
results show that an accurate respiration rate estimation is possible by decomposing the
channel.

In summary, location-based services demand accurate and ubiquitous localization.
However, the state-of-the-art localization systems do not cope well with realistic
wireless deployments and their positioning performances drastically degrade in these
environments. Hence, we provide a localization framework that copes well with realistic
wireless deployments and with NLOS settings. We conclude that resolving accurately the
multipath components enables pervasive and precise localization. In addition, sensing
enables new applications that are helpful in many issues since it provides not only location
but also context awareness. Hence, we show that algorithms and testbeds that are
designed for localization can be also utilized for sensing applications by tackling respiration
rate estimation.
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1 Introduction

1.1. Introduction

Satellite systems have been widely adopted to provide outstanding position accuracy
all over the world and many location-based services have been exploiting such precision.
Vehicle navigation, object tracking, rescue and many more applications would have not
been possible without them. Nowadays, there exist several satellite systems such as Global
Positioning System (GPS), Galileo and GLONASS, that can provide sub-meter level of
accuracy [7]. However, these systems become unreliable in indoor environments since the
satellite signals suffer from high attenuation due to the building walls. As a result, the
decoding of the signal might not be carried out successfully and the positioning fails. If
the decoding is possible, the multipath effects will degrade the localization performance.
Since most human activities are concentrated in indoor environments and the satellite
systems cannot meet the requirements, other wireless protocols have been investigated
for localization purposes. In particular, Wi-Fi and cellular networks, such as 3G and LTE,
have been extensively used to provide indoor localization.

To do so, any wireless protocol typically deploys Access Points (APs) to provide the
clients access to the Internet. To this end, every AP measures location information from
the client, typically the Angle of Arrival (AoA) and the distance of the client to the
AP. After collecting location data from several APs, which includes distance and/or AoA
estimates, a localization algorithm (like trilateration and triangulation) is run to compute
the client position. Although Wi-Fi and 3G/LTE are all wireless protocols, their use in
indoor localization has been developed in different ways. On the one hand, localization
by cellular networks has been motivated by government institutions like the Federated
Communication Commission of the United States and the European Commission. In
particular, they both requested the cellular network operators to enable a minimum
positioning requirement in case of an emergency call. On the other hand, Wi-Fi has
not been requested to provide localization requirements, therefore chipset vendors have
fully focused on communication. However, researchers have paid much more attention
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2 Introduction

to Wi-Fi than cellular networks. This was motivated by the fact that researchers can
build localization testbeds easily using Commercial Off-The-Shelf (COTS) Wi-Fi devices.
The research community has made a great effort over the past two decades to provide
accurate positioning while communication is carried out, without disturbing the regular
performance of the latter.

In the early 2000s, the pioneering Wi-Fi location systems [8–12] achieved several
meters of accuracy in indoor scenarios, which was an outstanding achievement. Despite
their efforts, those systems were still not able to provide the same level of accuracy as
GPS did in outdoors. The main reason for that poor performance was that they were
implemented using the very first Wi-Fi protocols such as IEEE 802.11b/g, and their
hardware characteristics were limited. In the early 2010s, the rollout of IEEE 802.11n
enabled a great number of localization approaches since it permits estimating the AoA
and the Time of Flight (ToF)/Time difference of Arrival (TdoA). In particular, the 3x3
Multiple-Input Multiple-Output (MIMO) enabled AoA as more than one antenna was
available, and the broader channels (up to 40MHz) made ToF and TdoA more reliable
[13]. As a result, decimeter level indoor localization was achieved [14–17]. In contrast,
the accomplished positioning accuracy by cellular networks was more limited during the
last decades. For instance, 3G enabled TdoA and received signal strength to derive the
distance of the client, but the reported errors were above 50 m. More accurate approaches
were enabled by LTE but still, the errors were around 20 m [18].

1.2. Motivation

Nowadays, cellular network operators, chipset vendors and application developers are
paying attention to exploiting location information to provide new location-based services,
for example, robot navigation, autonomous driving, augmented reality and many more
applications. In addition, positioning can be used for network optimization like predictive
handover, MIMO beam-forming, beam training overhead reduction in Milimiter-wave
(mmWave) communications and many more. The researchers’ endeavors go beyond
localization and they aim at providing context awareness. To this end, sensing is becoming
a potential extension of indoor localization since it inherits the same methodology of
extracting features of the radio-frequency signals. In particular, localization requires
getting the direct path, i.e., the path that goes from the transmitter to the receiver,
since this path conveys the location information of the client. Sensing, instead, aims
at exploiting Non-Line-Of-Sight (NLOS) paths that provide location information from
reflectors in the environment. Hence, a sensing application can estimate the position of
persons and objects. This enables to count the number of people in a room and to detect
intruders. Moreover, sensing can detect and understand small variations of reflected
paths so that it allows detecting human activities, monitoring vital signs, and many more
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applications [19–22].
The applications mentioned above require accurate and ubiquitous positioning. While

sub-meter level of localization accuracy is achieved in dense APs deployments and with
high channel qualities, i.e., every AP has a clear Line-Of-Sight (LOS) to the client,
accurate and pervasive localization is remarkable challenging in sparse APs densities
and in NLOS settings. In particular, the majority of localization algorithms require
coverage from several APs. However realistic indoor wireless deployments are optimized
for coverage, and therefore two APs, at most, will be available per room for positioning.
In addition, indoor environments are rich in multipath components that interfere with
the estimation of the direct path, then a system needs to minimize the influence of NLOS
paths. This becomes more challenging in crowded indoor scenarios where moving obstacles
block the direct path making it weaker than reflected paths. Therefore, a system might
take an NLOS path since it cannot discriminate the obstructed direct path, which results
in an unreliable position estimate. To the best of our knowledge, these two issues, sparse
AP densities and NLOS setting, have not been extensively analyzed and the majority of
the state-of-the-art systems do not perform well in such conditions.

To deal with that, 5G and the new Wi-Fi standards, IEEE 802.11ac and 802.11ax, are
becoming promising candidates since they incorporate hardware features that improve
localization accuracy. In particular, the higher number of antennas and the broader
channels alleviate multipath issues significantly because the angular and the time
resolutions improve by increasing the number of antennas and the bandwidth. As a
result, a location system improves the resolvability of the direct path and a more precise
localization can be achieved. Recent studies have experimentally analyzed the potential
performance of an indoor localization system based on IEEE 802.11ac [23–25]. However,
the authors tackled common indoor environments that have been extensively analyzed
before. While the majority of the Wi-Fi localization schemes have been validated using
COTS, few practical works for 5G can be found [26, 27]. This is because accessing real
traces from operator base stations is usually restricted.

1.3. Challenges and the main goal of the thesis

As we discussed previously, outstanding indoor localization accuracy can be achieved
but it is usually limited to scenarios where the APs have a clear LOS to the client and
with a dense AP density. These two conditions might not be available in realistic indoor
wireless deployments. Hence, the localization accuracy degrades drastically. To deal with
that, this thesis aims at addressing the following challenges:

Robust multipath discriminator. An obstructed direct path makes the NLOS
paths stronger. As a consequence, the estimation of the direct path becomes more
challenging as other paths have more influence on the received wireless channel, i.e.,
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the direct path might be masked by others. Therefore, a direct path estimator needs to
cope well with the interference of reflected paths and resolve all of them accurately. If
not, either a system might extract the direct path but it will be influenced by other paths,
or a system takes, instead, an NLOS path as a direct path. For both cases, the AoA and
the ToF estimates from the direct path are unreliable and the positioning might fail. This
is particularly decisive in sensing applications as well. As explained in the motivation,
sensing requires the estimation of NLOS paths to get location information from the objects
in the environment. The NLOS paths are usually weaker and estimating them is a similar
problem to get the obstructed direct path for localization. Hence, extracting low power
paths is also critical for sensing applications. Therefore, both localization and sensing
demand a robust multipath discriminator.

Sparse AP density. Realistic wireless deployments contain two APs, at most, per
room. Therefore, the localization relies on few estimates and not all the APs provide
valuable location information. For example, consider that two APs are available for
positioning. One has a clear LOS, which provides a precise position, and the other has
an obstacle in the middle of the direct path and its localization is unreliable. Hence,
combining equally the two estimates results in a non-optimal solution since the location
of the client will be shifted to a wrong position due to the influence of the unreliable AP.
Therefore, detecting and filtering unreliable estimates is crucial for accurate positioning.

Testbeds. Testbeds are also a key component of the localization systems since they
are used to implement and validate the proposed algorithms. In particular, testbeds
enable to extract Channel State Information (CSI) data for real traces so that a system
estimates the AoA and the ToF. Depending on the technology, testbeds cope with different
challenges as we discuss below.

On the one hand, cellular networks testbeds usually rely on specialized
hardware and researchers implement on them custom software. On the other
hand, there are open source software implementations [28, 29] that support end-
to-end LTE communications. However, they are designed to provide stable
communication rather than being specialized software for LTE localization. As
a result, modifications are necessary to enable positioning.

The majority of the Wi-Fi systems have been extensively developed on COTS
devices. However, these systems need to extract the CSI data from the COTS
firmware, and chipset vendors restrict access to the firmware by default. Hence,
firmware hacking and reverse engineering are needed to enable CSI extraction. In
addition, the extracted raw CSI data is contaminated by hardware imperfections
that do not affect the communication but make localization unreliable. Therefore,
these imperfections have to be handled before extracting AoA and/or ToF.

The main goal of the thesis is to provide a framework that aims at achieving
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accurate and pervasive indoor localization even in challenging environments, where
current localization schemes do not perform well. Moreover, sensing applications also
exploit position information from reflected paths as localization does from the direct
path. Hence, algorithms as well as testbeds that are designed for localization can be
utilized for sensing research. Therefore, we also aim at exploring how sensing can exploit
the proposed framework.

1.4. Contributions of the thesis

In particular, this thesis makes the following main contributions:
Accurate path decomposition. As explained before, extracting the obstructed

LOS path from the received channel is very challenging as it is likely to be masked by
reflected paths. Hence, resolving all the paths to accurately extract the direct path
without any interference from NLOS paths enables an accurate AoA and ToF estimation
of the client. Therefore, we develop a path decomposition algorithm that iteratively
estimates the strongest path and removes it from the received channel, so that weaker
paths can be extracted. This path cancellation ends once all the paths have been
extracted. This results in a coarse estimation of the channel since the paths are highly
correlated and a residual interference still remains. Hence, we apply a refinement by
a Nelder-Mead search which aims at minimizing the module of subtraction between
the received channel and the coarse estimation of the channel from the previous step.
Therefore, the resulting estimated channel is relatively free of interference and all the paths
are accurately extracted. We then obtain the AoA and ToF estimates from the direct
path to enable precise positioning. In addition, the scope of this algorithm goes beyond
localization and any application that requires extracting reflected paths can exploit it.
We enumerate the potential applications that can use it: simultaneous localization and
mapping, wireless imagining, vital signs monitoring and many more applications.

Localization algorithm. After extracting the AoA and ToF of the client, every
AP estimates its coordinates. Thus, a system combines the estimates from several APs
to compute the overall localization. However, not all the APs provide the same level
of precision since many of them are in NLOS, which make their estimation unreliable.
To deal with that, we propose a localization algorithm that first filters inaccurate APs.
Second, it computes the overall localization by combing client position estimates in terms
of the quality of the channel giving more weight to the APs that provide good estimates.
In particular, we measure the channel quality by the mean excess delay. This metric
measures the time delay by averaging the time of arrival of the paths according to their
power. Hence, if the direct path is much stronger than reflected paths, this metric has a
value close to zero. When the NLOS paths are stronger, the mean excess delay has a larger
value. This is particularly beneficial in applications that are sensitive to higher outliers
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since the larger localization errors are mainly caused by unreliable position estimates. We
can enumerate the potential applications that can use it: robot navigation, autonomous
driving, medical equipment location and many more applications.

Testbeds. Implementing the localization algorithms using cutting edge platforms
results in a more precise localization because the improved hardware features of the
latest wireless protocols increase the resolvability of multipath components. To this end,
we provide an LTE localization testbed that is fully based on srsLTE [28]. By default,
srsLTE is not a specialized software for localization, hence we modify it to support the
Sounding Reference Signal (SRS). This signal occupies almost the whole bandwidth and
therefore provides high time resolution. We also provide COTS testbeds for the newest
Wi-Fi protocols, IEEE 802.11ac and 802.11ax, as well as a methodology to tackle internal
hardware imperfections.

Profound validation. We carry out extensive measurement campaigns to validate
the performance of the proposed localization algorithms. We do comprehensive
comparisons of them with state-of-the-art schemes.

Sensing validation. Sensing also exploits localization information from reflected
paths as localization does from the direct path. Hence, we aim at validating that the
proposed path decomposition algorithm is capable of extracting accurately reflected paths.
To this end, we tackle human respiration rate estimation since it requires getting the path
of the signal that bounces off the chest without any interference from other paths. We
implement and validate a human respiration rate estimator that achieves a low rate of
errors.

1.5. Outline of the thesis

We describe below the outline of the thesis as well as specific contributions and findings
of every chapter.

Chapter 2. We give an overview of wireless localization. We provide details about the
wireless channel model, the path parameters, i.e., the AoA and ToF, that are contained
in the received channel, and how a system can localize a client.

Chapter 3. 5G enables outstanding localization performance but the 5G rollout
will take years to provide ubiquitous coverage. Therefore, 5G and Long Term Evolution
(LTE) will coexist for a while. Hence, evaluating the LTE localization performance is
important to understand which applications can be fulfilled without 5G. In this chapter,
we implement an LTE [1] localization system using software-defined radios. The system
fuses angular and distance information of the client to localize it with a single AP. The
distance is extracted through a Time of Arrival (ToA) estimation using the LTE SRS,
and the AoA is measured using the MUltiple SIgnal Classification (MUSIC) algorithm.
The evaluation shows a localization median error of 2 m and 4.6 m for LOS and NLOS,
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respectively. Despite the low bandwidth of LTE, the LOS precision that LTE provides
is sufficient for a range of application, while it may fail in fulfilling the localization
requirements in NLOS conditions.

Chapter 4. The previous chapter validated that NLOS degrades localization accuracy
significantly. In particular, the NLOS issue arises in many of the regular indoor wireless
deployments because walls, pieces of furniture and moving objects can block the direct
path. Hence, we delve into robust localization to deal well with realistic deployments
without an excessive degradation in NLOS setting. To this end, we propose UbiLocate
[2], an indoor localization system that achieves NLOS meter-level median accuracy.
Ubilocate provides robust indoor positioning through (i) an innovative angle estimator
based on a Nelder-Mead search, (ii) a fine-grained time of flight ranging system with
nanosecond resolution, and (iii) the accuracy improvements brought about by the increase
in bandwidth and number of antennas of IEEE 802.11ac. In combination, they provide
superior resolvability of multipath components, significantly improving location accuracy
over prior work by a factor of 2 and 3 for LOS and NLOS settings. We implement our
location system on off-the-shelf 802.11ac devices.

Chapter 5. Technology is constantly evolving and it is crucial to make available
cutting edge platforms to researchers. In particular, the new IEEE 802.11ax standard
enables a much denser spectrum and larger bandwidths than its predecessor, IEEE
802.11ac. These features are essential to achieve a more precise localization in challenging
indoor scenarios. We present the first system ever capable of extracting CSI from 802.11ax
consumer devices using the Broadcom 43684 Wi-Fi chipset. This platform [3] can extract
up to 160 MHz-wide CSI using 4x4 MIMO, and it is compatible with the latest HE
PHY. To further validate the usefulness of this platform, we evaluate the localization
performance of an 802.11ax implementation compared to an 802.11ac one. We conclude
that 802.11ax provides superior accuracy in LOS and NLOS improving the precision by a
factor of 1.75. This evaluation is not reported in the paper [3] which this chapter is based
on. We then enable a custom implementation of Fine Time Measurement on the IEEE
802.11ax devices to apply the same localization scheme proposed in Chapter 4.

Chapter 6. Going beyond localization enables many useful applications in the field
of health care, security and many more. In this chapter, we investigate how sensing
research can exploit the proposed localization framework. In particular, we tackle human
respiration rate estimation. To this end, we apply the proposed channel decomposition
algorithm to extract the path of the signal that bounces off the human chest. Therefore, we
can extract this path relatively free of interference from other paths. As a consequence,
we can recover the respiration signal that is contained in this path, and estimate the
respiration rate. We implement this system using the COTS Wi-Fi device presented
in Chapter 4. Our preliminary results show that the system is capable of getting the
respiration signal with low breathing rate errors.
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Chapter 7. This chapter concludes the thesis by summarizing our findings and
discussing possible research directions.



2 Background on wireless
localization

In this chapter, we first describe in detail the algorithms for localization assuming
that the Angle of Arrival (AoA) and distance of the client are known. We then explain
the wireless model where we introduce how the path parameters (AoA, distance) are
contained in the received channel and we give an overview on how to extract the path
parameters.

2.1. Location techniques

Indoor wireless localization has been deeply investigated using many wireless
technologies like Wi-Fi, cellular networks, Bluetooth, ultra wide-band, and visible light
communication [30]. A typical indoor wireless deployment consists of several Access
Points (APs) that provide Internet access to clients. To do so, a pair of client/AP
establishes a communication and exchanges frames by sending radio-frequency signals.
While the communication is carried out, the AP can estimate the location components
of the client such as the AoA and the distance from the client signal. Finally, a system
combines these location components of several APs with the known positions of the APs
to compute the client position.

Consider A as the number of APs. We denote the coordinates of the a-th AP as
pa = [xa ya]T where a = 1, . . . , A and (·)T means the transpose operator. We denote
the estimated client AoA and distance as θ̂a and d̂a for the a-th AP. We also denote the
client position as pc = [xc yc]T .

Several location algorithms estimate the client coordinates, we describe the most
relevant ones below.

2.1.1. Triangulation

It is an angle-based localization algorithm that involves the cooperation of at least
two APs. Figure 2.1 illustrates this algorithm. In the figure, three APs have estimated
the client AoA, and a system merges all these estimates to get the client coordinates. In

9



10 Background on wireless localization

θ2

AP1 AP2

AP3

θ1

θ3

Figure 2.1: Triangulation example

a 2D space, we can express the AoA in terms of the coordinates of the a-th AP and the
client as follows:

tan(θ̂a) = yc − ya

xc − xa
. (2.1)

If we separate the coordinates of the AP from the client ones, we have the following
equation:

xctan(θ̂a) − yc = xatan(θ̂a) − ya . (2.2)

The expression above can be expressed as a linear system to consider all the APs in
a matrix form:

Qpc = f , (2.3)

with Q is a matrix of size A× 2, pc is the client position and f is a vector of size A× 1
In particular, Q and f contain the following:

Q =


tan(θ̂1) −1
tan(θ̂2) −1

...
...

tan(θ̂A) −1

 ,f =


x1tan(θ̂1) − y1

x2tan(θ̂2) − y2
...

xAtan(θ̂A) − yA

 .

By applying the Least Square error (LS) method, the estimated client position is given
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by the LS solution:
p̂c = (QTQ)−1QTf . (2.4)

2.1.2. Trilateration

Trilateration is a distance-based localization scheme that requires that every AP
estimates the distance to the client. In particular, every estimated distance defines a
set of possible positions of the user. These positions are inside a circumference where
its center is the position of the AP and the radius is the estimated distance. Hence, the
client position is the point where all the circumferences intersect. Figure 2.2 illustrates
the algorithm.

For the a-th AP, the equation of the circumference is expressed as follows:

(xc − xa)2 + (yc − ya)2 = r2
a , (2.5)

with ra = d̂a .
However, this is a non-linear equation. To linearize it, we use the j-th constraint.

Therefore we add and subtract xj and yj as follows:

(xc + xj − xj − xa)2 + (yc + yj − yj − ya)2 = r2
a , (2.6)

with a = 1, 2, . . . , j − 1, j + 1, . . . , A
Reordering and grouping the above equation results in:

(xc − xj)(xa − xj) + (yc − yj)(ya − yj) = 1
2[r2

j − r2
a − d2

aj ] , (2.7)

where daj =
√

(xa − xj)2 + (ya − yj)2.
If we arbitrarily select the first constraint (j = 1), we have a system of linear equations:



(xc − x1)(x2 − x1) + (yc − y1)(y2 − y1) = 1/2 [r2
1 − r2

2 − d2
21] = b21

(xc − x1)(x3 − x1) + (yc − y1)(y3 − y1) = 1/2 [r2
1 − r2

3 − d2
31] = b31

...
(xc − x1)(xA − x1) + (yc − y1)(yA − y1) = 1/2 [r2

1 − r2
A − d2

A1] = bA1

(2.8)

The above set of linear equations can be expressed in a matrix form. For simplicity,
we use the same notation as in Section 2.1.1 for the matrix Q and the vector f . Thus,
we express the set of linear equations as follows:

Qp′
c = f , (2.9)

with Q is a matrix of size (A − 1) × 2, p′
c is a vector of 2 × 1 and f is a vector of size

(A− 1) × 1.
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Figure 2.2: Trilateration example

In particular:

Q =


x2 − x1 y2 − y1

x3 − x1 y3 − y1
...

...
xA − x1 yA − y1

 ,p′
c =

[
xc − x1

yc − y1

]
,f =


b21

b31
...
bA1


By applying the LS method, we can find the solution as:

p̂′
c = (QTQ)−1QTf . (2.10)

Finally, the estimated client coordinates correspond to the LS solution plus the
coordinates of the first AP: p̂c = p̂′

c + p1 .

2.1.3. Hybrid (AoA + distance)

In this approach, every AP estimates the coordinates of the client by combining the
AoA and the distance estimates. Figure 2.3 illustrates this localization scheme, where the
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Figure 2.3: Hybrid (AoA + distance) localization example

three AP estimate the position of the user. For the a-th AP, the estimated location of
the client is given by:

p̂a,c = pa + d̂a

[
cos θ̂a

sin θ̂a

]
. (2.11)

Finally, a system combines the position estimates from all the APs to get a more
robust client location. To do so, a weighted average is applied as follows:

p̂c =
∑A

a=1 p̂a,c · wa∑A
a=1wa

. (2.12)

The weights can be selected according to different strategies. For example, the most
simple one could be a regular mean where the weights have the same value. Another
strategy might select the weights in terms of the distance or the channel quality which
could indicate the reliability of the position estimates.

2.2. Wireless model

In an indoor environment, the transmitted signal propagates through a multipath
channel. Hence, the signal traverses through multiple paths and the received signal is
superimposed. Every path is defined by the path parameters. These are components
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of location information that define how the signal has traveled from the transmitter to
the receiver, and they are contained in the wireless channel. Hence, this section aims at
explaining the wireless channel and the path parameters. For localization, a system needs
to estimate AoA and/or the distance of the client that are path parameters of the direct
path. We then give an overview on how to estimate the AoA and the distance.

2.2.1. Path parameters

We start this section by explaining the path parameters for the Multiple-Input
Multiple-Output (MIMO) case since it is the most general type of communication. We
provide also details about how the received MIMO channel is defined in terms of the path
parameters. We explain the channel for the other types of communications, which are
Single-Input Multiple-Output (SIMO), Multiple-Input Single-Output (MISO) and Single-
Input Single-Output (SISO).

Consider a MIMO system where the transmitter and the receiver have Uniform Linear
Arrays (ULAs) of L and M antennas with an antenna spacing of half a wavelength. The
transmitter sends a set of Orthogonal Frequency-Division Multiplexing (OFDM) signals
s[k] = [s0[k], s1[k], ..., sL−1[k]] over K subcarriers and L antennas. The signals propagate
to the receiver through a multipath channel with P different paths that are characterized
by:
• Complex attenuation γp. The signal suffers an attenuation of γp along path p.
• Angle of arrival θrx,p. The signal arrives at each antenna with a phase delay
determined by the antenna spacing. The phase shift [ϕ(θrx,p)]m at the m-th receive
antenna as function of the AoA for the pth path is given by:

[ϕ(θrx,p)]m = e−j2πm sin(θrx,p)d/λ , (2.13)

where d is the antenna spacing of the ULA.
Since the antenna spacing is defined as half a wavelength, i.e., d = λ/2. This simplifies

the above equation:
[ϕ(θrx,p)]m = e−jπm sin(θrx,p) . (2.14)

We express the steering vector, i.e., the vector of phase shifts for the whole array as:

ϕ(θrx,p) = [[ϕ(θrx,p)]0, ..., [ϕ(θrx,p)]M−1]T . (2.15)

• Angle of departure θtx,p. Similarly, [ϕ(θtx,p)]l is the phase shift for the lth transmit
antenna as a function of the Angle of Departure (AoD):

[ϕ(θtx,p)]l = e−jπl sin(θtx,p) , (2.16)
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and we denote the vector of phase shifts for the whole array by ϕ(θtx,p) =
[[ϕ(θtx,p)]0, ..., [ϕ(θtx,p)]L−1]T .
• Path delay τp. Each path p experiences a different propagation delay determined by
its length. In the frequency domain, this delay represents a phase shift ψ(τp)[k] between
adjacent subcarriers:

ψ(τp)[k] = e−j2πk∆f τp , (2.17)

where ∆f is the spacing between consecutive subcarriers.
With the parameters above, we can express the MIMO channel as follows:

H[k] =
P −1∑
p=0

ϕ(θrx,p)γpϕ
H(θtx,p)ψ(τp)[k] , (2.18)

where (·)H is the Hermitian operator. The received signal is:

y[k] = H[k]s[k] + w[k] , (2.19)

where w[k] is L-dimensional white Gaussian noise in the frequency domain, i.e., w[k] =
[w0[k], w1[k], ..., wL−1]. For a known s[k], we can then estimate the channel as:

Ĥ[k] = y[k]s∗[k] = Ĥ[k] = H[k] + ŵ[k] , (2.20)

where (·)∗ is the conjugate operator.
The hardware configuration of transmitter and receiver can differ. It might that none

of them have an array or only one of them. In particular, MISO does not consider AoA
since no array is used at the receiver side, SIMO does not consider AoD and SISO neither
AoA nor AoD. The SISO channel is expressed as:

HSISO[k] =
P −1∑
p=0

γpψ(τp)[k] (2.21)

2.2.2. Overview of the estimation of path parameters

The direct path contains the distance and the AoA of the client. Therefore, extracting
them accurately from the observed received channel is needed for accurate positioning.
We start this subsection by explaining the most simple case where the AoA is estimated
assuming that a single path arrives at the receiver. We generalize this case to address the
AoA estimation in a multipath environment. Finally, we show how the distance can be
estimated.
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2.2.2.1. AoA estimation in a single path channel

Consider a SIMO communication, where the transmitter has a single antenna and the
receiver has a ULA with an antenna spacing of half a wavelength. We also consider that
only one signal arrives at the receiver, i.e., the transmitter sends a signal which propagates
through a single path channel and arrives at the receiver with a certain incident angle,
θrx. Figure 2.4 illustrates this case. In the example, the signal arrives with a certain delay
at antenna 1 compared to antenna 0. In particular, this delay is caused by the distance of
d ·sin(θrx). Hence, it introduces a phase shift that we already defined in Equation (2.13).

θ

d·sinθ

Antenna array

d ···

rx

rx

0 1 M-1

Figure 2.4: A signal arriving at the receiver array with a certain angle θrx. The antenna
spacing is d which corresponds to half a wavelength.

The observed received channel is expressed as follows:

ĤSIMO[k] = ϕ(θrx)γψ(τ)[k] + w[k] , (2.22)

The AoA is extracted by finding the angular component of the received channel over
multiple antennas. Selecting one subcarrier, the AoA can be estimated by the observed
phase difference between two consecutive antennas as:

θ̂ = arcsin(∆̂m,k/π) , (2.23)

where ∆̂m is the observed phase difference between the antennas m and m − 1 for the
subcarrier k.

To remove the effects of the noise, the above operation can be averaged over several
pairs of antennas and subcarriers to get a smoother AoA estimate.
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2.2.2.2. AoA estimation in a multipath channel

In an indoor environment, the received signal is usually a superimposed signal, where
every signal arrives with an incident angle. We express the multipath channel as follows:

ĤSIMO[k] =
P −1∑
p=0

ϕ(θrx,p)γpψ(τp)[k] + w[k] , (2.24)

The very first AoA estimator was designed to get the AoA of a superimposed signal
based on beamforming techniques [31]. In particular, this algorithm steers the received
channel at a certain angle (θ) and measures the output power. We express the output
power for a certain angle as follows:

P (θ) = ϕH(θ)Rϕ(θ) , (2.25)

with R is the correlation matrix of the array which we define it as:

R = 1
K

K−1∑
k=0

ĤH
SIMO[k]ĤSIMO[k] . (2.26)

Therefore, the estimated AoA is the one that maximizes the output power:

θ̂ = arg max
θ

P (θ) −π
2 ≤ θ ≤ π

2 . (2.27)

The resolution of this approach depends on the number of antennas and might not
cope well with closer incident signals. To deal with that, researchers proposed super-
resolution algorithms by applying an eigendecomposition. The most famous algorithm is
the MUltiple SIgnal Classification (MUSIC) algorithm [32] which separates the signal and
the noise sub-spaces. The signal sub-space contains the eigenvectors associated with the
incident signals and the remaining eigenvectors, i.e., the eigenvectors that are not in the
signal sub-space, are associated with the noise sub-space. In particular, MUSIC exploits
the eigenvector property of orthogonality. This property defines that the eigenvectors are
orthogonal to each other, i.e., the output of the scalar product of two eigenvectors is zero.
Hence, the signal sub-space is orthogonal to the noise sub-space. MUSIC finds the AoA
by multiplying a set of steering vectors, each one associated with a possible AoA, by the
noise sub-space. The AoA related to the steering vector which is orthogonal to the noise
sub-space is the AoA of the incoming signal.

However, MUSIC was designed to work with uncorrelated signals and signals are
highly correlated in a multipath environment since they come from the same source. This
is common in indoor environments where walls, pieces of furniture and people moving
around create reflected signals. In such conditions, the eigendecomposition may fail and
the signal subspace is not correctly computed. To overcome this limitation, compressed
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sensing [33] is appealing since it copes well with highly correlated signals. Nevertheless,
its time complexity is quite demanding since it requires complex optimization solvers.
Therefore, its usability can be prohibitive in real-time applications. In Chapter 4, we
provide the details of our proposed algorithm that estimates all the path parameters
and achieves better performance than state-of-the-art estimators while having lower time
complexity.

2.2.2.3. Distance estimation

The path delay represents the propagation time of the signal from the transmitter to
the receiver. Hence, the delay can be multiplied by the speed of light to get the distance.
However, in practice, the transmitter and the receiver are not typically synchronized.
As a consequence, the receiver does not know when the transmitted signal was sent and
therefore, the observed delay at the receiver has a time uncertainty. We summarize the
main two methods to obtain the distance below.

Attenuation-based: The signal path loss depends on the distance [34,35]. Therefore,
the estimated attenuation is used to derive the distance as follows:

Prx = P0 − 10µlog10(d), (2.28)

where Prx is the received power in dB, P0 is the received power at a distance of 1 m in
dB, and µ is the path loss exponent.

Consequently, the distance is expressed as follows:

d̂ = 10(P0−Prx)/(10µ) (2.29)

ToF-based: As explained before, the transmitter and the receiver are not typically
synchronized, hence the observed path delay at the receiver is unreliable for distance
estimation. To overcome this limitation, ToF-based approaches aim at synchronizing the
communication by the cooperation of multiple devices. Either a system gets the absolute
value of the path delay by having synchronized receivers and using one of them as a
reference [36], or it uses a timestamp-based technique that allows getting the Round-
Trip Time (RTT). This timestamping approach has been standardized by the IEEE
in the IEEE 802.11 protocol called Fine Time Measurement (FTM). FTM measures
the distance between the AP and the client which are the Responder and the Initiator,
respectively. Figure 2.5 shows an example of an FTM session where packets and their
associated acknowledgments are exchanged. In particular, four timestamps are needed
per measurement, which are t1, t2, t3 and t4. The Responder starts the measurement by
sending a packet and it records the time of departure of the packet in t1. This packet is
received by the Initiator and the Initiator records the time of arrival of the packet in t2.
The Initiator sends back an ACK and it records the time of departure of the ACK in t3.
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Finally, the ACK is received by the Responder and it records the time of arrival of the
ACK in t4. Then, RTT is computed as follows:

RTT = 1
n

n∑
x=1

((t4(x) − t1(x)) − (t3(x) − t2(x))) , (2.30)

where n is the number of measurements.
We are able to determine the distance in meters using the speed of light c as d̂ =

c ·RTT/2.
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Figure 2.5: Example of an FTM session of 1 burst of for 4 measurements.

The performance of FTM has been analyzed thoroughly in [37] and the authors
concluded that FTM is very accurate in outdoor environments whereas it gets a
detrimental performance in indoor settings due to the multipath effects. This is caused
by the arrival of several paths that are close in time. Hence FTM cannot separate them
properly and the resulting RTT estimate is biased. We address this issue in Chapter 4
where we implement an FTM-like protocol much more robust to multipath than plain
FTM.

From a practical perspective, distance-based localization systems are easier to deploy
than angle-based ones since they do not require antennas arrays. They can be also
implemented on the client as they do not require high computational costs. In
contrast, angle-based localization systems need antenna arrays for AoA estimation and
the computational cost of the AoA estimators are usually excessive for a client Central
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Processing Unit (CPU). Hence, they are usually run in the AP or servers.



3 Performance Evaluation of
Single Base Station ToA-AoA

Localization in an LTE Testbed

3.1. Introduction

Location systems for cellular networks are rapidly gaining in importance, both due
to the proliferation of location based services, as well as the promise of much more
powerful mobile network management and control mechanisms that use location as
context information. This is especially important in light of increasing device densities and
wireless data rates. In fact, strict requirements for localization have been already specified
in the future 5G standard, requiring an accuracy of 1m or less in 99% of the cases for
indoor and outdoor [38,39]. However, the transition from Long Term Evolution (LTE) to
5G will be progressive. 5G rollout will begin in major urban areas as replacing most of the
mobile infrastructure in one go is unaffordable for operators. This fact is reflected in the
Cisco forecast and trend 2017-2022 [40] which predicts that the 5G devices and connection
constitute over 3% of global mobile devices and connections by 2022. This leaves many
areas and devices with only partial or even without 5G coverage. Ubiquitous location
systems therefore have to incorporate legacy mobile technology, most importantly LTE.

While the current localization techniques enabled by the LTE standard cannot
achieve the high level of 5G location accuracy, they can provide a performance that
is sufficient for a range of important applications. Several techniques for localization are
included in the 3GPP standard, such as fingerprinting or triangulation and trilateration
approaches, based on Angle of Arrival (AoA), Time of Arrival (ToA) and reference
signal received power. Such systems face many challenges: either the localization error
reaches up to dozens of meters, they have high response times, or require coverage by
several Evolved Node B (eNB), which, in particular indoors, is not always given. In
addition, synchronization and/or clock errors are likely to degrade the accuracy due to
the combination of several eNB measurements.

Hence, single eNB localization techniques using ToA and AoA measurements to
estimate the direction and distance between the User Equipment (UE) and the eNB are

21
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highly important for next generation networks. Furthermore, such techniques will greatly
benefit from upcoming technologies such as Massive Multiple Input Multiple Output
(MIMO) systems [41], and from higher bandwidth allocation. Thus, evaluating and
understanding the achievable accuracy and behavior of single eNB localization in current
LTE networks is necessary to assess which location-based services can be supported.
Moreover, it serves as an useful starting point for next generation localization techniques.

To the best of our knowledge, there are no works in the literature evaluating single
eNB localization performance of ToA plus AoA in a practical LTE testbed. Some works
study other technologies and approaches for localization in LTE [42,43], where the authors
assess various LTE localization systems, but unfortunately the errors are above 20m which
severely limit their usefulness. Besides, most of them are only theoretical studies and thus,
they do not include the effects of real-world hardware, the channel environment, as well
as implementation complexity. While some practical studies exist, they do not target
single eNB localization. For example, the authors in [44] have evaluated a coordinated
localization system of several eNBs. Other works go beyond the LTE standard [45] and
use sampling rates that are higher than those of current LTE systems.

In this chapter, we evaluate the achievable positioning accuracy for an LTE-compliant
system. We consider a 2D space where the system exploits angular and distance
information for the localization. The distance is extracted through ToA estimation using
the LTE Sounding Reference Signal (SRS), and the AoA is measured using the MUltiple
SIgnal Classification (MUSIC) algorithm. Our system is implemented on the eNB side
to benefit from its improved RF hardware, antenna characteristics and computational
power.

To do so, we carry out a measurement campaign in two different locations. The
results of our performance evaluation indicate a median location error around 2m. While
this performance does not meet the localization requirements of 5G and some Internet of
Things (IoT) applications, such as robotics and augmented reality. But, it suffices for a
great range of IoT applications which do not require a strict sub-meter accuracy, such as
transportation and moving, sensing things, healthcare and many more [46,47].

The rest of the chapter is organized as follows. Section 3.2 reviews LTE characteristics
and functionality related for the positioning system. In Section 3.3, we describe the
location system itself. Section 3.4 provides the details of our measurement campaign and
Section 3.5 presents the evaluation results. Finally, Section 3.6 concludes the chapter.

3.2. LTE background

This section gives an overview of the LTE concepts [48] that are related to localization:
synchronization, reference signals and how localization can be implemented within the
LTE standard.
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3.2.1. LTE Synchronization

Time and frequency synchronization between eNB and UE are critical to ensure
reliable communication as well as precise positioning. The synchronization process
includes two main steps:

Timing symbol synchronization: It is the first timing synchronization in LTE.
The purpose is to set the boundaries between symbols.

Timing subframe and frame synchronization: In order to know exactly when
to send the data, the UE needs to know the frame and subframe boundaries.

The first step is done exploiting the redundancy in each symbol to estimate the
boundary, given that the Cyclic PRE-fix (CP) is a copy of the end of the symbol added
at the beginning of it.

The second step uses the Primary and Secondary Synchronization Signals (PSS and
SSS). The UE estimates the cross-correlation of the PSS to synchronize every half frame
since the PSS is sent two times per frame. Afterwards, the same process is applied to the
SSS to achieve frame synchronization.

3.2.2. LTE Reference Signals

The reference signals are known sequences which are used for multiple purposes like
channel estimation or equalization. The signals of interest for localization are:

Sounding Reference Signal (SRS): The SRS is transmitted in the uplink
direction occupying up to 18MHz in its maximum configuration. It is used by the
eNB to measure the uplink channel and the timing advance over a wider bandwidth.
The signal is based on Zadoff-Chu sequences [49]. The main property of interest
is the ideal cross-correlation: the cross-correlation of this sequence with a cyclic
shifted version of itself is zero, except in the position of the lag.

Positioning Reference Signal (PRS): The PRS is transmitted in the downlink
direction. Its main purpose is to measure the ToA at the UE side and, consequently,
it can be used for positioning. Similar to the SRS, this signal occupies a wider
bandwidth up to the maximum available.

While, in contrast to the PRS, the main purpose of the SRS is not to localize. It is very
useful for this purpose since it occupies almost the whole bandwidth and therefore provides
reasonably high time resolution. Besides, the Zadoff-Chu properties make the SRS more
reliable in case of multi-path effects, thanks to the ideal cross-correlation property.
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3.2.3. Localization in LTE

While LTE design naturally focuses on communications first and foremost, it does
support localization services through two main mechanisms [50]:

Observed time difference of arrival: Using a similar concept as GPS, the UE
measures the downlink signals from several synchronized eNBs, and the localization
is done measuring the time difference of arrival among them. Starting with Release
9, the PRS was included to enhance the accuracy of this mechanism. Furthermore,
the same concept for the uplink direction was added in Release 11, where several
eNBs measure the same signal sent by the UE.

Enhanced cell ID: Measurements like timing advance, angle of arrival and
reference signal received power, together with the ID of the serving cell are used to
improve the estimation of the position of the UE.

3.3. Localization Process Description

Especially for indoor positioning, single-eNB localization techniques are appealing.
They only require local processing at the eNB or UE without any further LTE
enhancements that may not be present in all LTE deployments.

For this reason, we consider a 2D location system based on LTE, where the UE is
synchronized by the eNB over the air. The eNB has to measure two variables to determine
the UE location, the first is the AoA, giving the direction at which the UE is located, and
the second is the ToA, which provides an estimate of the distance between both.

3.3.1. AoA Estimation

There are several algorithms to estimate the AoA of an incoming signal, but none are
included in the LTE standard. For our system, we have selected MUSIC algorithm [51]. It
is a classic algorithm for AoA estimation which is gaining relevance thanks to MIMO [52].
MUSIC is based on decomposing through an eigendecomposition the correlation matrix
of the signal into two subspaces: the signal and the noise. The signal subspace contains
the information regarding the AoA of the incoming signal. To extract the AoA, instead
of using the signal subspace, MUSIC exploits the eigenvector property of orthogonality to
multiply a set of steering vectors, each one associated with a possible AoA, by the noise
subspace. The AoA related to steering vector which is orthogonal to the noise subspace
is the AoA of the incoming signal.

Consider a Uniform Linear Array (ULA) of antennas where the number of antennas is
M and the distance between antennas is half of the wavelength. Due to multipath effects,
there are P signals which arrive at the ULA. Each signal has an associated AoA, θrx
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where p ∈ {0, 1, · · ·, P − 1}. The ULA output is defined as:

x(t) =
P −1∑
p=0

ap(αp)sp(t) + w(t), (3.1)

where sp(t) is the signal source, ap is the steering vector associated to sp and w(t) is a
vector of white Gaussian noise. The steering vector is given by:

a(αp) = [1, e−j 2πd
λ

sin(αp), · · ·, e−j
2πd(K−1)

λ
sin(αp)] (3.2)

We can write the correlation matrix of the input stream as follows:

Rx(t) = E{x(t)xH(t)} = ΦSΦH + σ2I, (3.3)

where S is the signal covariance matrix, the operator σ2 is the noise power, I is the
identity matrix and Φ is the steering matrix. S is assumed to be definite positive (rank
P ), which gives the following representation:

R = UΛUH (3.4)

where U is a unitary matrix which contains the eigenvectors and Λ is a diagonal matrix
which contains M positive and real eigenvalues.

MUSIC splits the eigenvalue/vector pairs into two subspaces, the signal and noise.
The signal eigenvectors are P eigenvectors where each one has an associated eigenvalue
larger than the noise power such that (λ0, · · ·, λP −1 > σ), whereas the remaining ones
are equal to the noise power (λP = · · · = λM−1 = θ). This results in the following
representation:

R = UsΛsUH
s + UnΛnUH

n (3.5)

where the columns of the signal subspace matrix, Us, are the P principal eigenvectors
and Un contains the remaining M − P eigenvectors.

The orthogonality property of the eigenvectors ensures that Un is orthogonal to Us

and, consequently, to the steering matrix. Therefore, MUSIC exploits this fact to extract
the AoA. To do so, MUSIC defines the spatial spectrum as:

pM(θ) = 1
∥aH(θ)Un∥ 0 ≤ θ ≤ π (3.6)

In a scenario where the main path is the Line-Of-Sight (LOS), the associated AoA is
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the angle which maximizes the MUSIC spatial spectrum:

θ̂ = arg max
θ

(pM(θ)) (3.7)

3.3.2. ToA estimation

Since the UE is synchronized with the eNB, the ToA can simply be measured by
cross-correlation between the SRS sent by the UE and the received one by the eNB. The
argument of the maximum value of the cross-correlation indicates the communication
lag. In fact, this lag does not represent the propagation delay introduced by the channel,
it represents twice that value because the same delay is added in the synchronization
process of the UE. That is, the UE time reference, which is used to determine the start
of the transmission of a frame, is the one of the eNB plus the propagation delay of the
channel, since the synchronization is done over the air. LTE defines the concept of timing
advance to compensate for it and avoid that the UE sends the information outside the
slots given by the eNB. eNB measures the timing advance in the same way as the ToA,
by the cross-correlation of the random access preamble or with the SRS, and sends it to
the UE. The timing advance resolution, as is defined in LTE, corresponds to a distance
of 78.12m. In case the UE is closer to the eNB than this resolution (which is the case in
our experiments), the timing advance is 0 and does not have any effect.

The SRS received by the eNB in the frequency domain is:

Y[k] = H[k]X[k] + W[k], (3.8)

where H[k], X[k] and W[k] represent the kth sample of the the channel, the SRS sent by
the UE and white Gaussian noise, respectively, in the frequency domain.

We denote the observed cross-correlation between the received and sent SRS as
rSRS [n], given by:

rSRS[n] = IDFT{Y[k]X∗[l]}, (3.9)

where n is the discrete time sample, the symbol (·)∗ denotes the conjugate operator and
IDFT{·} denotes the Inverse Discrete Fourier Transform.

The eNB can estimate the lag by finding the argument which maximizes the absolute
value of the cross-correlation:

î = arg max
n

|rSRS[n]| (3.10)

This argument corresponds to a given sample and because the SRS is a time discrete
sequence, this sample corresponds to a given moment in the discrete time. Let us define
the moment when the UE sends the SRS as t0 + δ, where δ is the propagation delay
introduced by the channel. In addition, t̂i is the moment that the cross-correlation peaks
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at the eNB, which corresponds to t0 + 2δ. Consequently, we can express the ToA as:

δ = t̂i − t0
2 (3.11)

Finally, we can express the distance given by the ToA dT oA as:

dT oA = cδ, (3.12)

where c is the speed of light in the space. Note that the dT oA values are also discrete and
its resolution directly depends on the bandwidth of the SRS.

3.4. Implementation

Our setup consists of one eNB and one UE. The UE side runs on a laptop with 16GB
of RAM and 4 cores at 2.8GHz and we use an inexpensive bladeRF Software-Defined
Radio (SDR) for the radio communications. The eNB is a desktop PC with 16 GB RAM
and 8 cores at 3.4 GHz. We also run the Evolved Packet Core (EPC) in a virtual machine
on the same desktop PC, with 1 core and 6GB RAM. The eNB is connected to an Universal
Software Radio Peripheral (USRP) X310, a type of SDR, which serves as radio interface.
We measure AoA using an additional Location Measurement Unit (LMU) composed of a
USRP X310 equipped with two TwinRX daughterboards to ensure phase synchronization
among the four available channels. The four antennas are LTE compliant with a gain of
7dBi and arranged as an uniform linear array. This LMU is driven by another PC with
the same characteristic as the eNB one. The complete setup is depicted in Figure 3.1.

Figure 3.1: LTE location system components

The software for the LTE functionality (eNB, UE and EPC) is based on srsLTE [28].
srsLTE is a fully operational open source software implementation of the LTE cellular
systems. We chose this setup since it performed better and was more stable than the other
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most commonly used LTE software implementation, OpenAirInterface [29]. The LMU is
based on GNU Radio [53], an open source software which provides signal processing blocks
for SDRs. Out of the box, srsLTE does not fully support the SRS on the eNB side, whereas
the UE can correctly send it. We thus modify the srsLTE eNB implementation to set the
SRS configuration in the Radio Resource Control (RRC) messages as determined by the
standard, specifically, the system information block 2 and RRC connection setup.

Regarding the LTE configuration, the system uses the maximum available bandwidth
of 20 MHz in frequency division duplexing mode with a normal CP. The center frequency
is 1.8GHz. We configure the SRS to be sent every 50 ms with a bandwidth of 18MHz,
the maximum that LTE supports. This gives a ToA resolution of 8.625m.

We run our measurements in two indoor locations at IMDEA Networks. The first
one is an empty room without furniture with a size of 21x9m where perfect coverage
and visibility are available over the whole scenario. In contrast, the second scenario
is a 19x15m office space, where the furniture and dividing walls create Non-Line-Of-
Sight (NLOS) areas and increase the number of multipath components. Figure 3.4 shows
the floor plan of the office (as well as the measurement results). It has a central open area
with desks, chairs and screens, and individual offices on the right and left hand side of
it. The obstacles that create NLOS areas are the pillars and the dividing wall indicated
in thick black, as well as the glass walls which separate the offices from the open area.
For the rest of the chapter, we will refer to the first scenario as the auditorium and the
second one as the office.

There are 40 and 25 measurement points in the auditorium and office scenarios,
respectively. For 5 of the points in the office scenario that are located inside closed offices,
we took measurements twice, once with the office door open and once with it closed. We
carry out experiments in each point measuring the AoA and ToA to determine the overall
localization accuracy.

3.5. Numerical Results

This section illustrates the results of the LTE location system. The results of the
AoA and ToA estimation are first discussed separately, and then the performance of joint
estimation for localization is presented. We note that the localization accuracy is degraded
in case of NLOS. For this reason, we separately show the cases of LOS and NLOS in the
office scenario. Finally, we provide a visual representation of the measurements in the
office scenario to assess the performance in detail.

3.5.1. AoA

Figure 3.2(a) shows the Cumulative Distribution Function (CDF) of the AoA error.
For the case of LOS, the errors in the auditorium and the offices are very similar, in
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Figure 3.2: Empirical CDF for AoA and ToA error

contrast to the case of NLOS. The fiftieth percentile of the cases have an AoA error
below 1.4◦ and 2.2◦ in the auditorium and LOS office, whereas in the NLOS office case,
they are below 13.4◦. The effects of NLOS are extremely noticeable in the office and
degrade considerably the AoA performance. Also, the maximum error in LOS office is
considerably larger compared to the auditorium due to the richer multipath environment.
Moreover, the highest errors in the auditorium and LOS office case do not come from the
furthest points. Thus, this indicates that they are caused by multipath instead of the
distance.

3.5.2. ToA

As explained in Section 3.3.2, the measured ToA depends on the symbols of the
SRS and is measured with the granularity of a symbol length. In addition, for each
measurement point, we see a certain variability in the ToA discrete values. Such
variations can be caused by systematic delays because of several factors, such as hardware
processes of the internal FPGA of the SDRs, software process executed on the PC and
minor synchronization errors of the system. While this effect degrades the performance
relying on individual ToA measurements, the system can achieve higher accuracy when
averaging over the set of measurements due to these fluctuations. In other words, as
these fluctuations produce that the ToA varies between two or more discrete values, the
system estimates one depending on the underlying ToA. Hence, averaging over the set
of measurements results in an more accurate ToA. At the same time, this mitigates the
synchronization errors.

The ToA results are illustrated in Figure 3.2(b). They behave very similar for all
scenarios. First, it indicates that the lack of LOS does not significantly degrade the
accuracy. Second, the office environment has more multipath components compared to
auditorium, but the performance in both is very similar, indicating that the multipath
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does not significantly deteriorate performance. The median distance error is below or
equal to 1.76, 2.05 and 1.92m for auditorium, LOS and NLOS office. Although, the
ToA resolution of an individual ToA measurement is 8.625m, the variability in the
measurements plays a key role to improve the performance when averaging measurements
over time.

3.5.3. Localization

Figure 3.3 shows the CDF for the localization error. The localization performance
mainly depends on the AoA accuracy in the NLOS cases and not on the ToA. The results
for auditorium and LOS office show a similar behavior with a median error of 1.76 and
2.12m, respectively, whereas in the NLOS office it is 4.67m. In extreme cases, the location
can have an error of up to 9.97m in NLOS due to very low AoA accuracy. However, the
remaining scenarios have a maximum error of 4.3 and 4.48m.

3.5.4. Further observations

Figure 3.4 shows the floor plan of the office scenario where we illustrate the MUSIC
spatial spectrum for each measurement point. The text boxes below these profiles
represent the error values in meters of the ToA (top) and the overall localization with
AoA and ToA (bottom). The black and yellow color of the MUSIC spatial spectrum
represents whether a point is LOS or NLOS. In addition, for the cases within the offices,
the dashed line represents measurements taken with the door open and the solid one with
the door closed.
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In the third row and for the cases of NLOS in the open area, the spatial spectrum
indicates that the AoAs come from a reflection instead of the direct path. Note also that
for the case behind the wall, where there are no strong reflections, the AoA is slightly
shifted from 90◦ to 80◦. In the two furthest points from the eNB within the offices, the
AoAs come from the door, whereas with the door closed, the AoAs come from the direct
path. For the remaining points, the performance of the AoA behaves similar for both
cases.

Figure 3.4: Measurement errors of ToA and overall localization (AoA+ToA) in the office.
Each point contains the MUSIC spatial spectrum as well as the error values for ToA and
localization. Besides, on the right side two MUSIC spectrum and two error values appear
to consider whether the door is closed or open
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3.6. Conclusion

While 5G network standards come with very strict localization requirements and
improved localization mechanisms, LTE networks will continue to be used along with
5G for quite some time to come. This implies that ubiquitous location-based services
will also have to make use of LTE localization schemes whenever 5G is not available.
Evaluating the potential of the current LTE standard for localization is thus important
to understand overall performance of localization in future mobile systems. We have
tested the performance of a single eNB localization system in an LTE testbed based on
software-defined radios. The measurements show that in LOS conditions the system has a
median localization error around 2m. However, localization accuracy is degraded in cases
of NLOS with a median error of 4.67m. Finally, we observe that an LTE location system
can achieve an accuracy that covers a wide range of location-based service requirements,
even including some of the future IoT scenarios.
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4.1. Introduction

Wireless localization has become an important application of wireless communications,
and the positioning accuracy has improved substantially over the past two decades of
research. However, Non-Line-Of-Sight (NLOS) settings drastically reduce the localization
performance as seen in Chapter 3. In particular, the insufficient accuracy of the previous
evaluation is mainly due to the limited hardware characteristics of Long Term Evolution
(LTE) and the use of rudimentary signal processing algorithms. In this chapter, we
present UbiLocate, a ubiquitous Wi-Fi location system that works both under Line-Of-
Sight (LOS) and NLOS conditions. We achieve good NLOS localization through the
improvements brought about by IEEE 802.11ac in terms of bandwidth and number of
antennas, in combination with novel signal processing for multipath decomposition, that
jointly help to resolve multipath effects much more accurately. In particular, this chapter
makes the following main contributions:

• Optimized AoA extraction. Classic algorithms such as MUSIC [32] and ESPRIT
[54] have been widely used to analyze RF signals for path parameter estimation, especially
Angle of Arrival (AoA). [34, 55, 56]. Recently, compressed sensing techniques have been
demonstrated to provide better accuracy [33, 57, 58]. However, their application can be
computationally prohibitive in common scenarios. In order to reduce the computational
complexity, UbiLocate iteratively determines a first estimate of the path parameters and
then refines it through a Nelder-Mead search [59]. This minimization results in a more
accurate multipath decomposition, and UbiLocate achieves an AoA accuracy improvement
of a factor of 2 for LOS and 1.5 for NLOS settings compared to state-of-the-art algorithms
[14].

• Controlled Ranging. Estimating the absolute Time of Flight (ToF) and thus the
distance between client and Access Point (AP) requires timestamped packet exchanges,
as standardized in the 802.11 Fine Time Measurement (FTM) protocol [37,60]. However,

33
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FTM is inaccurate in multipath-rich environments [61]. UbiLocate uses a custom protocol
similar to FTM that has lower overhead and is more robust by decomposing the multipath
channel to accurately determine the ToF of the first path. Again, UbiLocate improves
the ToF estimation accuracy by a factor of 2 for LOS and and 1.5 for NLOS compared
to plain FTM.

• Filtering reliable APs. Depending on the specific scenario, the estimates from
different APs have different fidelity. When averaging the location information provided by
all APs, low quality estimates may contaminate the overall location accuracy. UbiLocate
therefore includes a mechanism to evaluate the quality of different estimates, giving more
weight to the APs that provide good estimates.

• Implementation on off-the-shelf devices. We implement the UbiLocate
system on off-the-shelf Asus AC2900 RT86U routers that support IEEE 802.11ac with
4x4 Multiple-Input Multiple-Output (MIMO) and 80 MHz of bandwidth. The improved
hardware capabilities increase localization accuracy since the larger bandwidth and
number of antennas allow for better time and space resolution. We can thus extract
the path parameters more accurately than with the older IEEE 802.11n standard. We
modify the router firmware to access Channel State Information (CSI) in order to estimate
AoA, Angle of Departure (AoD), and ToF. (i) UbiLocate is the first location system
implemented on off-the-shelf devices that works with 80 MHz Wi-Fi channels and does
not require a non-disclosure agreement (the existing 80 MHz location systems [24, 25]
use Quantenna devices that require such a non-disclosure agreement). (ii) It is also the
first IEEE 802.11ac-based location system that can simultaneously derive both angle and
absolute distance to a target device, whereas prior work uses two separate co-located
devices for this purpose [25,61].

We deploy UbiLocate in a large office environment and test it with different AP
densities and with both LOS to NLOS measurement points. Our performance evaluation
shows that UbiLocate achieves meter-level median accuracy even for pure NLOS and low
AP density scenarios. It outperforms current state-of-the-art systems by a factor of 2-3.
Finally, we release our tool to extract CSI and perform FTM-like ranging to the research
community to foster wireless systems research with 802.11ac. We believe that it will
prove similarly useful as the widely used CSI tool for 802.11n [62], given the hardware
improvements offered by 802.11ac. The CSI extractor tool with the modified firmware
and documentation are available in a github repository [63].

4.2. UbiLocate overview

UbiLocate locates a wireless device using AoA, AoD, and ToF information. This is
relatively straightforward when several APs with direct LOS are within range. However,
typical indoor Wi-Fi deployments do not provide ubiquitous LOS coverage since NLOS
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links can provide sufficiently high data rates.
In such complex environments with NLOS, the multipath channel and the resulting

superposition of different signals at the receiver significantly affects the quality of the
location estimate. Even under pure NLOS, good location accuracy is feasible as long
as the location system can discriminate between obstructed LOS paths and the NLOS
paths coming from reflections. The latter must be discarded, since they lead to erroneous
angle and ToF estimates. By definition, obstructed LOS paths pass through an obstacle,
and thus their signal power may be severely attenuated compared to other NLOS paths.
Accurately detecting them requires a fine-grained multipath decomposition of the channel.

As is common for wireless location systems, we assume that the positions of the
APs are fixed and known. To discriminate the multipath components, UbiLocate
minimizes the norm of the difference between the observed received signal and estimated
superimposed signals and their path parameters. The number of possible combinations
of path parameters makes brute force minimization computationally prohibitive, but if
an approximate estimate is known, the minimization can be sped up significantly. To
this end, we first compute rough estimates of the path parameters and then refine them
through a Nelder-Mead search [64].

This provides better accuracy than the widely used MUSIC and similar approaches [14]
which resolve the paths in one round. UbiLocate iteratively estimates the parameters
of the strongest path and then subtracts them from the received signal. This allows
UbiLocate to estimate the parameters of weak paths that would otherwise be masked
by stronger ones and is especially critical in NLOS environments. In contrast to prior
iterative approaches [65–67], we further refine the estimation to remove imperfections
which leads to improved angle accuracy in the challenging cases we target in this chapter.

Figure 4.1 shows a typical NLOS scenario in which reflected paths may be stronger
than the obstructed LOS one. In addition, as shown on the right in this example figure,
path p1 and path p2 are close in time and angle, and the uncertainty around path p2 makes
it hard to discriminate the two. In such a scenario, accurate multipath decomposition is
key for good location system performance.

4.2.1. Angle estimation

For device localization, UbiLocate requires extracting the angles for the direct or
obstructed LOS path, provided such a path exists. This path is contained in the observed
received channel in the frequency domain, which we already defined in Section 2.2.1. This
channel is expressed as a function of the attenuation, the path delay, the AoA and the
AoD as follows:

Ĥ[k] =
P −1∑
p=0

ϕ(θrx,p)γpϕ
H(θtx,p)ψ(τp)[k] + w[k] =

P −1∑
p=0

Hp[k] + w[k] , (4.1)
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Figure 4.1: NLOS example with obstructed los path.

with k is the k-th subcarrier, P is the number of paths, ϕ(θrx,p) is the vector of phase
shifts at the receiver Uniform Linear Array (ULA) introduced by the AoA, ψ(τp)[k] is the
path delay introduced by the propagation of the signal, γp is the complex attenuation,
ϕ(θtx,p) is the vector of phase shifts at the transmitter ULA introduced by the AoD and
w[k] is an L-dimensional white Gaussian noise in the frequency domain, where L means
the number of transmitter antennas

The direct path is the one that typically arrives earliest in time before any of the
NLOS paths coming from reflections, i.e., the one with the smallest τp. Note that the
ToF τp is not an absolute value but reflects relative delay differences among paths. (For
ranging, UbiLocate uses a customized FTM implementation.) While directly using AoD
information is not useful due to potential rotation of the device to be located, estimating
it jointly with the other path parameters considerably improves the path resolvability [68].

To extract parameters of all paths, our objective is to find an expression for H[k] that
minimizes ∥Ĥ[k]−H[k]∥. Ĥ[k] is the observed channel and H[k] contains the contribution
of each path according to the estimated path parameters. However, minimization by brute
force is computationally prohibitive due to the large number of combinations of path
parameter. Hence, we split the minimization into two steps. We first perform a greedy
matching projection to iteratively estimate the path parameters. We then perform a
minimization through Nelder-Mead search based on the extracted path parameters from
the first step to refine them.

4.2.1.1. Greedy estimation

Through greedy matching projection we iteratively compute the contribution of the
strongest path, estimate its parameters, reconstruct it, and then subtract it from the
overall measured channel. The output of the subtraction is the channel residual and using



4.2 UbiLocate overview 37

the residual we can then estimate the second strongest path’s contribution, and so on, until
the parameters of all significant paths are estimated. This allows estimating accurately
even the weak paths often found in NLOS scenarios, since we first remove the contribution
of the stronger ones. As is illustrated in Figure 4.1, depending on the properties of the
reflectors, paths p2 and p3 may be significantly stronger than the obstructed LOS path
p1.

We apply a matching projection to the observed channel and the path parameters
that maximize it are the ones from the strongest path p = 0. We then remove this path
from the observed channel and apply matching projection to the residual to obtain the
second strongest path p = 1, and so on. In general, in iteration p we extract path p as
the strongest path of the residual as:

(τp, θrx,p, θtx,p) =

arg max
τp,θrx,p,θtx,p

∑
k

ϕH(θrx,p)Ĥr
p[k]ϕ(θtx,p)ψ∗(τp)[k] , (4.2)

The path parameters produce phase shifts, where ϕ(θrx,p) and ϕH(θtx,p) are the phase
shifts introduced by the AoA and AoD at receiver and transmitter antennas, and ψ(τp)[k]
that of the path length for subcarrier k. We multiply these phase shifts by their conjugates
in the projection, so that only the correct path parameters maximize it. The residual in
iteration p is given by

Ĥr
p[k] = Ĥ[k] −

p−1∑
p′=0

ϕ(θrx,p′)γp′ϕH(θtx,p′)ψ(τp′)[k] , (4.3)

where the residual for p = 0 is the original channel Ĥr
0[k] = Ĥ[k].

To solve the optimization problem in Equation (4.2), we first determine τp. To do so,
we convert the channel from the frequency domain to the time domain H[t], by applying
an over-sampled inverse discrete Fourier transform to the channel. In the time domain,
the path delay τp of the strongest path is directly the time t value that maximizes ∥H[t]∥.
This channel is given by a combination of sinc functions with maxima in the different
delays. Now, given τp we have

H[τp] = ∑p−1
p′=0 ϕ(θrx,p′)γp′ϕH(θtx,p′)(ψH(τp)ψ(τp′))

≃ ϕ(θrx,p)γpϕ
H(θtx,p)

, (4.4)

and Ĥ[τp] = H[τp] + w̄[τp] with noise at the instant τp computed as w̄[τp] =∑K
k=0 ŵ[k]ψ(τp)∗[k]. With this, we can estimate the angle information. Instead of jointly

estimating the θrx,p and θtx,p, we first estimate θtx,p by a grid search assuming that θrx,p
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is unknown. This results in the following formulation:

max
θrx,p,θtx,p

[1, 0, 0, . . .]Ĥ[τl]ϕ(θtx,p). (4.5)

Having estimated θtx,p, we can iteratively refine either angle by a grid-search assuming
that the other is known which increases the estimation accuracy. This individual
estimation of two parameters is much faster than a joint estimation of two parameters.
We refine the angle estimation by maximizing the following expression:

max
θrx,p,θtx,p

ϕ(θrx,p)HĤ[τl]ϕ(θtx,p) . (4.6)

Once all parameters for one path are estimated, we recompute γp as a linear MMSE
solution to minimize the error between the measured channel and the reconstructed one.

4.2.1.2. Refinement search

The previous estimation of the path parameters may contain imperfections since the
paths are highly correlated. This may leak information of the parameters from weaker
paths to stronger ones and vice versa. To refine the estimates, we carry out a Nelder-Mead
search to minimize ∥Ĥ[k] − H[k]∥. This optimization method iteratively generates sets
of points that compose a simplex polytope. The gradient expression for the refinement
problem is very complex, whereas below we show how to obtain an objective function that
is simple to evaluate. This makes Nelder-Mead search a much better fit for the specific
problem of multi-path refinement than gradient descent. While Nelder-Mead search itself
is well studied, to the best of our knowledge it has never been applied to the problem of
path parameter estimation.

We use a vectorized version of the problem ĥv = Φγ, with ĥv =
[v(Ĥ[0])T, . . . , v(Ĥ[K − 1])T]T, [Φ]:,p = ψ(τp) ⊗ (ϕ∗(θtx,p) ⊗ ϕ(θrx,p)) and [γ]p = γp.
This way, we have ĥv as the vector containing all measurement information, Φ as all
path contributions and γ as their complex gains. Note that only Φ has a dependency
on the path parameters and each column depends only on one path, while γ behaves as
a weight vector for the different path contributions. Converting the formulation from
min ∥Ĥ[k] − H[k]∥ to the vectorized version of the problem min ∥ĥv − Φγ∥2 makes it easy
to evaluate the minimization. Now let Φ⊥ be the orthonormalization by Gram-Schmidt
of Φ and A the invertible square matrix such that Φ = Φ⊥A to simplify the incoming
equations. Then

min ∥ĥv − Φγ∥2 = min ∥ĥv∥2 + ∥Aγ∥2 − R(ĥH
v Φ⊥Aγ)

= min ∥ĥv∥2 − ∥(Φ⊥)Hĥv∥2 + ∥(Φ⊥)Hĥv − Aγ∥2

= min ∥ĥv∥2 − ∥(Φ⊥)Hĥv∥2
(4.7)
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Figure 4.2: Standard FTM (left) sends dedicated messages per pair of nodes and
UbiLocate (right) broadcasts a single frame per node for ranging with all other nodes.

This formula is very fast to evaluate, making it amenable to a Nelder-Mead search over
the path parameters θrx,p, θtx,p, τp in expression (4.7). Then, γ is recomputed as the linear
MMSE solution using the refined parameters.

The direct path pdp corresponds to the index p with the smallest τp. To avoid spurious
results, we add a power regularization term

pdp = min
p
τp − 0.0001 γp

maxp′ γp′
. (4.8)

Finally, the estimated AoA at the AP is given by

θ̂ = θrx,pdp
. (4.9)

4.2.2. Ranging

Accurate ToF information is crucial for ranging and thus for localization.
Unfortunately, locating a target node with multiple APs leads to several problems that
must be addressed to achieve good performance. Each AP is running its own clock
source, and since the different clocks are not synchronized, it is not possible to correct
ranging estimates simply by post-processing the collected CSI data. Obtaining accurate
ToF estimates between each AP and the client requires multiple packet exchanges with
timestamps, as in the FTM protocol. While this protocol was standardized several
years ago [37], the majority of current Wi-Fi devices do not support it (including the
ones we instrument for this work). At the same time, FTM measurements of devices
that do support it show suboptimal performance in multipath-rich environments. We
thus introduce in our framework the first implementation of an FTM-like protocol that
obtains accurate ranging information on off-the-shelf 802.11ac devices that support CSI
extraction.

In Figure 4.2, we highlight the differences between the standard FTM and our
implementation by showing how ranging is performed with three nodes Nn, n ∈ {1, 2, 3}
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with time on the x-axis. Standard FTM uses unicast frame-ack exchanges, whereas
UbiLocate broadcasts frames asynchronously to all other nodes. This significantly reduces
the number of frames for ranging with multiple nodes.

For the FTM frames 1-6, we indicate the destination (at transmitter) and the source
(at receiver) and the corresponding times. For instance, frame 3 (FR3) is transmitted at
time T1 by node N1 (the initiator) to node N3 (the responder) that receives it at time
T2. Afterwards, N3 responds by transmitting frame FR4 to node N1 at time T3, which
is received at node N1 at time T4. In addition to specifying the frames carrying the
timestamps, FTM defines a mechanism to collect timestamps measured by the responder
at the initiator. Then, FTM uses T1, T2, T3 and T4 to evaluate the Round-Trip Time
(RTT) and thus the distance d̂:

RTT = (T4 − T1) − (T3 − T2)

d̂ = (RTT/2) · c
, (4.10)

where c is the speed of light. By using both transmit and receive times it is possible to
remove the reaction time uncertainty, i.e., the delay between frames FR3 and FR4. The
procedure can be repeated multiple times to average results and obtain a more accurate
estimate [37]. For FTM, N(N − 1) = 6 frames are required to compute the N = 3
distances, resulting in a quadratic overhead.

Instead, UbiLocate requires only N = 3 broadcast frames as shown in the right part
of the figure. A frame includes the N − 1 timestamps when the last frame from each
of the other nodes was received, as well as the transmit timestamp for the frame itself.
These frames are transmitted asynchronously by each node, and are opportunistically
reused by other nodes, resulting in a linear overhead. This also removes the need for a
dedicated collection mechanism. The three frames FR7-FR9 are used to compute the
three distances. We first use FR7 in place of FR3, and we call T1 the time when FR7 is
transmitted by node N1, and T2 the time when it is received at node N3. We then use
FR9 in place of FR4, sent and received at T3 and T4, respectively. As FR9 embeds T2

and T3 (among other timestamps), upon receiving it, node N1 can use the same equation
above to determine the distance. We can reuse FR7 together with FR8 to evaluate the
distance between nodes N1 and N2. Similarly, we can reuse FR9 with FR8 to estimate
the distance between N2 and N3.

4.2.3. Localization

With the information discussed previously, AP a can estimate the location ŷa of the
target device in Cartesian coordinates using

ŷa = xa + d̂a

[
cos θ̂a

sin θ̂a

]
, (4.11)
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where xa is the (known) position of AP a, d̂a is the estimated distance of the target device
from the AP, and θ̂a is the AoA estimated at the AP.

Since Equation (4.11) holds for any AP, we have a system of A such equations, where A
is the number of APs. However, not all APs provide equally useful location information
and a simple strategy that averages all estimated positions ŷa with equal weights is
suboptimal. To identify and filter out unreliable estimates, UbiLocate uses a metric that
measures the dominance of multipath components with respect to the direct path in the
received signal. The specific metric used by our system is the mean excess delay [69], given
by the weighted average of the delays of every single multipath component with respect
to the direct path, with relative path power as the weight. More precisely, assuming that
we can discriminate P > 1 different paths, the mean excess delay τm,a for AP a is:

τm,a =
∑P −1

p=0 ∥γp∥2(τp − τ0)∑P −1
p=0 ∥γp∥2 , (4.12)

where γp and τp are the complex attenuation and ToF of path p, respectively, and τ0 is
the ToF of the first received path.

If the contribution of the multipath components is small compared to the direct path,
τm,a will tend to 0, whereas larger values of τm,a indicate stronger multipath. Hence, a
large mean excess delay is an indication that the position estimate ŷa of AP a might be
less reliable. UbiLocate uses a threshold τth and discards the estimates whose mean
excess delay exceeds τth. Since this metric largely depends on the geometry of the
scenario, obstacles and many other factors, fixing an absolute threshold for this metric to
remove unreliable APs could lead to also removing useful APs. To address this, for each
measurement point UbiLocate applies a dynamic threshold relative to the AP with the
lowest mean excess delay, τlw. Specifically, τth is equal to two times τlw.

We denote byA′ the set of APs for which the mean excess delay τm,a is below τth. Then,
given |A′| estimates along with their corresponding mean excess delay τm,a, UbiLocate
computes the final position of the target node with a weighted centroid approach:

ŷ =
∑|A′|−1

a=0 ŷa · (τm,a)−1∑|A′|−1
a=0 (τm,a)−1

. (4.13)

This way, estimates with a small mean excess delay receive a higher weight. UbiLocate
thus discards very unreliable estimates and gives higher importance to estimates from the
most reliable APs. Furthermore, UbiLocate addresses the following issues:

Extreme angles. Extreme angles are defined as angles below -75◦ and above
+75◦. For these cases, UbiLocate’s AoA estimator may takes the opposite solution
(i.e., UbiLocate estimates -75◦ when the correct AoA is +75◦), due to the fact that the
relative phase differences become close when the angles approach ±90◦ and the system is
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Figure 4.3: ASUS 802.11ac router with custom antenna array.
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Figure 4.4: Phase differences for the antennas pairs.

affected by noise. To overcome this issue, UbiLocate considers both possible AoA values
and computes the two resulting positions. UbiLocate then chooses the one that has the
minimum distance to the position estimates from other APs.

Disagreement between position estimates. When UbiLocate combines estimates
from very few APs, a single outlier may lead to large location errors. UbiLocate handles
the specific case when only two APs are available for the localization. If the distance
between location estimates is high, this indicates that the estimate of one of the AP
is an outlier and thus combining the two estimates may degrade the location accuracy.
UbiLocate then takes the AP with the lowest ToF estimate for the localization when the
distance between the two position estimates exceeds 4 m.
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4.3. Implementation

We build UbiLocate on the Nexmon project that provides a first step towards CSI
extraction from several chipsets developed by Broadcom [70]. We largely improve over
this prior work to consistently extract accurate and reliable CSI, implement features that
make CSI extraction more flexible, and add support for timestamping both received and
transmitted frames with very high accuracy.

For our implementation we select the Asus AC2900 RT-AC86U router since it supports
80 MHz 802.11ac with up to four spatial streams in a 4x4 MIMO configuration. The
firmware that we developed replaces the standard one by Broadcom and can capture the
CSI matrix for frames with configurable MAC addresses. In addition, it recognizes the
type of frame, including the spectral width and the spatial configuration, and collects
the CSI matrix accordingly. Since the router exposes only three antenna SMA plugs
externally, we remove the front panel to access the fourth internal UFL connector and
attach a custom antenna array handler to the four antennas of the router as shown in
Figure 4.3.

We now discuss how we (1) validate the collected CSI and process it to estimate AoA
and AoD, (2) provide the timestamping features, and (3) finally implement the enhanced
FTM procedure.

4.3.1. Extracting accurate CSI

A range of preliminary measurements with our hardware platform reveal that
calibration is needed to remove hardware imperfections that would otherwise affect the
CSI and render it too unreliable for localization tasks. Specifically, we address the
following problems:

Phase offset between antennas. While all the RF chains share the same sampling
clock and reference signal (to tune to a given frequency), an unpredictable phase offset
between each pair of antennas appears every time the system is tuned to a new Wi-Fi
channel. As a result, the measured phase delay may not correspond to the one measured
by the AoA or AoD algorithms. This unpredictable phase offset then remains flat over
time.

Echos. We observe that the router generates echos from a received signal, i.e., the
signal is repeated in the time domain. The time distribution of such echos is fixed and
they never change.

We devise a procedure to remove these two imperfections which consists of a
calibration experiment that has to be repeated every time we configure the equipment.
During the setup, we capture a full CSI matrix with the four antennas connected to
the same single-chain transmitter. This can be easily achieved by connecting the output
ports of a 4-way splitter to four short cables that are also used to connect the four
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Figure 4.5: Enhanced CSI extraction platform with the modifications to collect ToF.

external antennas during the localization experiment later. The splitter ensures that all
the signals arrive in phase, and hence the AoA of the transmitted frame is at 0 degrees.
Thus, all phase offsets measured between the receive chains depend only on the (random)
configuration of the local oscillator. The rationale behind this experiment is that the full
CSI matrix captured during the calibration phase represents a reference signal that can
be used for correcting the CSI vectors captured afterwards. To this end, we perform the
(element-wise) Hadamard division ⊘ between new CSI vectors and the reference one:

calibrated CSI = CSI ⊘ reference CSI

Figure 4.4 shows the phase offset between different pairs of antennas before (Figure 4.4(a))
and after applying the calibration (Figure 4.4(b)). The residual phase offset appears
to be minor Gaussian noise, confirming that this procedure reliably removes the phase
imperfections due to the hardware configuration.

4.3.2. Extracting timestamps

Implementing a ToF measurement procedure similar to standard FTM requires
accurate time-stamping capabilities in both the transmit and receive directions, and the
majority of the Wi-Fi chipsets, including the one in the chosen platform, simply lack them.
We hence used the Nexmon firmware patching framework [71] to add these capabilities
to the platform, following a similar approach to the one in [36]. The main modifications
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involve the software that runs in the D11 CPU, a microcontroller that manages all time-
critical operations such as channel access, beaconing, generation of reply frames, etc. This
software consists of a single main loop that i) can neither be interrupted by internal IRQs
nor by the upper layer ARM Wi-Fi core; and ii) branches into secondary functions when
the hardware reports conditions that require additional work. In particular, we modify
two functions that belong to the reception and transmit paths, respectively.

The first function is invoked when a preamble is detected and performs multiple checks
on the first bytes of the incoming frame to decide how to process it. The CSI extraction
patch already adds a single instruction loop that spins until the frame is completely
received and then it pushes both the CSI data and the frame to the host. We further
customize this loop by adding instructions to sample the value of the high-frequency clock
of the system whenever the frame ends. We represent this modification in Figure 4.5 with
the spinning wheel on the right data pipe (reception path). As shown, after the CSI data
is retrieved from the PHY at the bottom, the RX timestamp travels up to the application
that runs in user space and collects all the data.

The second function is invoked when the hardware verifies that all the conditions
required for transmitting a frame are satisfied (i.e., the channel was idle long enough for
the backoff counter to reach zero, no more energy is detected in the channel, no other
operations are pending, etc). When this happens, the hardware is already transmitting
the frame preamble. The function can then customize the transmission and monitor it
until it terminates. We add two modifications here. The first writes the timestamps
overheard during the previous transmissions as well as the device’s own timestamp into
the frame. The second consists of a new loop that waits until the end of the transmission
and is represented in the figure with the spinning wheel on the left data pipe (transmit
path). With this code we capture the transmit timestamp.

We obtain both timestamps by sampling the high-frequency clock that runs at the
speed of the D11 CPU. For the chosen platform this corresponds to 192.6 MHz, and thus
the receive timestamp has an uncertainty of 1.56 m when in perfect LOS without any
multipath. In the presence of multipath, the timestamps are affected by the arrival of
all the paths which leads to a bias. However, UbiLocate can extract an accurate time of
arrival of the first path using the CSI data of the timestamp packet. Specifically, every
path that arrives at the receiver introduces a phase rotation in the CSI of the subcarriers.
By decomposing the channel in time domain, UbiLocate can eliminate the multipath bias
and thus estimate a much more accurate time of arrival for the direct path.

4.3.3. Implementation of the FTM procedure

To evaluate the ToF between two nodes, we use the same set of equations as in
Equation (4.10) for standard FTM. We consider two frames traveling in opposite
directions—relatively close in time—and we combine the four corresponding timestamps
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of two transmissions and two receptions. However, different from FTM, the frames do
not belong to a specific frame-ack exchange. Instead, they are transmitted by the nodes
asynchronously. In our experiments we transmit such frames frequently, so that frames
from each AP are close in time to that of the client, but other strategies are possible: i.e.,
the client might initiate the procedure by transmitting a train of frames and all APs can
schedule the same number of transmissions as soon as they receive the first frame from
the client. We leave such modifications for future work.

To generate the ToF-related frames we use the injection capabilities available in
the Nexmon CSI framework. We implement a user-space application that uses a PID
controller to generate frames at a configurable rate, e.g., one frame every 4 ms. We also
modify the D11 code to keep the same pacing at the access layer. This solution is key to
avoid any DMA-related delay and ensure that at any moment in time there are enough
“close” frames transmitted by all nodes, so that ToF estimation and thus ranging can be
done. We further implement a back-pressure mechanism to avoid saturating the DMA
memory when the queue holding injected frames starts to build up.

Another deviation from standard FTM is the fact that our implementation has no
initiator and responder. For this reason, we cannot store timestamps at the responder and
collect them later from the initiator. Hence, we modify the D11 code to store transmission
timestamps directly inside the frame. To this end, we additionally modify one of the two
functions described in the previous section. With this modification, we obtain all the
necessary information for running the ranging procedure by capturing traffic traces at all
nodes. In these traces we have the frames, corresponding reception timestamps and CSI
data, and the transmission timestamps generated by the sender.

We finally describe the overall procedure for evaluating ToF between a pair of nodesN1

and N2. We start by processing the traces captured at each node, containing the frames
received from the other one. We then align the clock of node N1 to that of N2. We extract
from all frames collected by N1 the reception timestamp (at N1) and the transmission
timestamp (generated by N2). We then apply linear regression to remove the clock skew
between the two nodes, adjusting both reception and transmission timestamps. For each
frame transmitted by N1 we associate the closest frame in time received from N2 and we
apply Equation (4.10) to the four-tuple of timestamps, yielding a ToF estimate. Since
each AP transmits these broadcast ToF packets asynchronously, collisions are avoided
by means of the standard DCF channel access mechanism of IEEE 802.11. However,
we observe a variability in the ToF estimates due to systematic delays introduced by
Wi-Fi packet processing similar to plain FTM [37]. These delay differences follow a
Gaussian distribution which is centered approximately at the correct ToF value. We
can thus remove this uncertainty by averaging over a certain number of estimates to
compute a smoother ToF. We observe that 20 around estimates for good accuracy. As
UbiLocate sends broadcast ToF packets every 4 ms, on average 80 ms are required to
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compute a smoothed ToF estimate. We also tested UbiLocate’s ToF with different levels
of background traffic and do not observe any degradation in raw ToF estimation accuracy.
With fully backlogged background traffic, which corresponds background traffic rate of
500 Mbps, UbiLocate gets around 40 ToF estimates per second which results in smoothing
ToF estimates over 500 ms.

4.4. Experimental Evaluation

We now evaluate the location accuracy of UbiLocate in a realistic setup and compare
it to several state-of-the-art location systems.

4.4.1. Testbed setups

To provide a comprehensive performance comparison of UbiLocate and state-of-the-
art location schemes, we test three different deployments. The first is a simple scenario
with high AP density, where all APs have a LOS path to the station. This corresponds
to the benign conditions under which location systems are usually tested. Second, we
evaluate a medium density scenario where the station usually sees several APs with a
mix of LOS and NLOS conditions, which tests the systems under adverse conditions.
Finally, we move to a much larger and more sparse environment where usually only two
or three APs are available at a time. This corresponds to the most common real-world
deployments that are optimized for Wi-Fi coverage, rather than localization performance.

High density testbed The high density environment comprises four APs, each one
placed in the corner of a room of size 85 m2, as shown in Figure 4.6(a). The deployment
has an AP density of 1/21.25 m2. We further ensure that each AP has a clear direct path
to the station.

Medium density testbed The map of this testbed is depicted in Figure 4.6(b). The
area is approximately 300 m2, contains 5 APs, and has an AP density of 1/60m2. It has
seven distinct areas: six rooms, not all of which contain an AP, and one central corridor.

We consider 110 measurement points located in rooms 1, 2, 3, 4, and in the corridor,
shown as blue dots in Figure 4.6(b). The five APs used to localize the target are shown as
red dots and they are placed in rooms 1, 2, 5 and 6, and in the central corridor. With this
deployment we ensure that: 1) the majority of target locations are in LOS with exactly
one of the APs; 2) some of the target locations—the ones in rooms 3 and 4—are not in
LOS with any of the APs; and 3) two APs—namely the ones in rooms 5 and 6—do not
have a clear LOS to any of the target locations. Finally, for this deployment we also test
different pure NLOS scenarios, where for each measurement point we specifically remove
the only AP that does provide LOS, if any.

Low density testbed. This testbed pushes the location systems to their limit with
a much more sparse deployment. This is in fact the most realistic scenario, with an AP
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(a) High density testbed. (b) Medium density testbed.

(c) Low density testbed.

Figure 4.6: Testbeds.
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density close to that of the actual production Wi-Fi deployment in this office building.
It comprises two wings of a building and one central area that connects them as shown
in Figure 4.6(c), with a total area of 578 m2 and an AP density of 1/115 m2. Each
wing contains an open plan area with desks, as well as closed offices on either side. The
dividing walls, furniture and the people moving around (measurements were taken during
daytime) create a rich multipath environment and many areas without LOS. The scenario
comprises 70 measurement points, and each point is usually covered by only two (in the
best case by three) APs, whereas in the other scenarios most measurement points are
covered by all APs. As a result, in this setting it is crucial to properly merge the location
information from the few APs within range.

In all the considered scenarios, the APs are working in monitor mode, extracting one
CSI matrix for every received frame. For ranging, each AP exchanges 802.11 frames
with the target device following the procedure described in Section 4.2.2. A central
controller connected to the APs via Ethernet gathers all the data to compute the AoA
and the distance for every AP as described in the previous sections. Finally, the algorithm
presented in Section 4.2.3 is executed on the controller to estimate the position of the
device.

4.4.2. Comparison with other systems

We benchmark the performance of UbiLocate against the following three state-of-the-
art indoor location systems.

Spotfi [14] is a Wi-Fi location system which combines angle measurements from
several APs to determine the device position. Spotfi computes AoA and path delay using
a 2-dimensional MUSIC algorithm with spatial smoothing for accurate AoA estimates.

FUSIC [61] is based on ToF measurements to determine the device position. It
relies on FTM ranging and uses the 1-dimensional MUSIC algorithm to reduce multipath
effects.

SPRING [25] combines both AoA and ranging information to provide single AP
localization. It uses the MUSIC algorithm for AoA and FTM for the distance. While
SPRING was originally designed to work with only one single AP, in our experiments we
average the estimates of all of the APs to provide a better position estimate.

We compare these systems against two different versions of UbiLocate, one that
estimates the position using AoA, AoD and ToF, and a more basic version which only
takes into account AoA and ToF. To distinguish different versions of UbiLocate and
indicate the main features used by each system, we apply the following labeling scheme:
letters A, D, and T identify a system using AoA, AoD and ToF information, respectively.
For example, UbiLocate [AT] is used to refer to the basic implementation of UbiLocate
that only uses AoA and ToF, whereas UbiLocate [ADT] refers to the full version that
uses all information.
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Figure 4.7: High density testbed.

Before we delve into the overall performance of our location system, we first study
the performance of the individual components of UbiLocate, i.e., the angle and ranging
estimates, in isolation. In particular, the UbiLocate AoA estimator is compared against
the 1D MUSIC AoA estimator and against the one used in Spotfi. We also compare
UbiLocate’s ranging subsystem to vanilla FTM and to the improved FTM-based ranging
proposed in FUSIC.

While the majority of the systems described above were designed for and evaluated
with the older IEEE 802.11n Wi-Fi standard, we compare them against UbiLocate both
for IEEE 802.11n and IEEE 802.11ac. SPRING also originally uses 80 MHz frames but
is based on a proprietary Quantenna platform. In addition to the improved hardware
capabilities of recent devices, the new 802.11ac standard supports 4x4 MIMO and up to
80 MHz of bandwidth. These features help significantly to resolve multipath effects. For
reference, 802.11n systems are limited to 3x3 MIMO and up to 40 MHz of bandwidth.

4.4.3. High density scenario

The aim of this experiment is to localization performance of UbiLocate and the rest of
the system in a benign multipath environment and to compare it against the state-of-the-
art approaches in an environment similar to the one they have been designed for. This
also allows validating that the performance of the state-of-the-art algorithms matches the
results reported in the respective papers. To this end, we first consider a simple LOS
environment, as indicated in Figure 4.6(a). It comprises four APs, with one AP placed
in each of the corners of room 1. We use 40 location measurement points in an area
of 85 m2. In addition, to show how the improved capabilities offered by the 802.11ac
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Figure 4.8: Empirical CDF for AoA and ToF error for all APs, and for LOS (solid lines)
and NLOS (dashed lines).

standard impacts location accuracy, we evaluate all methods both for IEEE 802.11ac
as well as IEEE 802.11n configurations. As shown in Figure 4.7, when using 802.11ac
frames, UbiLocate achieves sub-meter localization accuracy for all the target points and
a median error of 30 cm for [ADT] and 40 cm for [AT]. On the other hand, Spotfi and
SPRING have a median error of 60 cm and 70 cm and a maximum error of 2.3 m and
3.6 m. FUSIC has the worst performance with a median error of 1.7 m. As expected,
we observe that moving from 802.11ac to 802.11n leads to a performance degradation
for all of the systems. For example, UbiLocate’s median error increases from 30 cm
to 60 cm for [ADT] and from 40 cm to 85 cm for [AT], respectively. Since the relative
performance of the approaches does not differ substantially between 802.11n and 802.11ac,
for the remaining experiments we only compare the performance of all systems with an
802.11ac configuration. It is worth highlighting that UbiLocate [ADT] is the only system
that achieves sub-meter location accuracy for all measurement points in the high density
testbed, making it an excellent fit for location-based services that are sensitive to errors.

4.4.4. Medium density scenario

After evaluating UbiLocate in a simple LOS and dense environment, we now study
how the individual features AoA and ToF behave in more complex settings with LOS
and NLOS. Afterwards, we will show how these features translate into localization
performance.

4.4.4.1. Analysis of individual features

We test the performance of the different angle and ranging algorithms in the large
deployment scenario shown in Figure 4.6(b).
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AoA. As shown in Figure 4.8(a), under LOS conditions UbiLocate achieves an
excellent median error of 1 degree and 3 degrees for the [ADT] and [AT] versions
respectively and a maximum error of 20 and 50 degrees, while Spotfi and MUSIC both
have a significantly higher median error of 3.7 and 4.4 degrees and a maximum error of
65 and 55 degrees, respectively. For the measurement points that have NLOS, UbiLocate
achieves a median error of 6 degrees while that of the other two approaches is above
10 degrees. A striking difference can be seen for the maximum error achieved 90% of
the times: while UbiLocate has an error of at most 20 and 25 degrees for [ADT] and
[AT] which is still partly usable, both Spotfi and MUSIC errors reach 40 degrees, which
is indicative of significant outliers. We attribute our improvements to the Nelder-Mead
search algorithm described in Section 4.2.1, which iteratively refines our estimates of the
AoA by removing the effects of undesired multipath components. Note that the graph
includes the raw estimates for all APs within range, whereas for the actual localization
the AP estimates are weighted and filtered (i.e, not all estimates are used).

Ranging. Results for the ranging subsystem are shown in Figure 4.8(b). We verify
that UbiLocate can perform ranging more accurately than FTM and FUSIC. Specifically,
we measure a median error of 43 cm for UbiLocate (90% of the times below 1.3 m in LOS
conditions), while FUSIC and FTM both achieve similar performance, with 0.8 m and 2 m
for 50% and 90% of the cases, respectively. Also for NLOS conditions, UbiLocate ranging
accuracy outperforms the other methods, with a median error of 1.1 m, while FUSIC and
FTM have errors of 1.6 and 1.9 m. The key features of our system that enable this good
performance are the accurate timestamping capabilities we added to the firmware of the
devices (see Section 4.3).

4.4.4.2. General localization

We now evaluate the overall localization accuracy of the different approaches
in the medium density scenario. Specifically, we demonstrate the robustness of
UbiLocate against NLOS and how UbiLocate deals with potentially contradictory location
information from different APs in two spatial contexts: the LOS + NLOS deployment
and a special case of only NLOS.

LOS + NLOS. This deployment scenario is shown in Figure 4.6(b) and comprises five
APs and 110 measurement points. In the best case, there is only one AP in LOS while the
other APs are in NLOS. Thus, it is critical to exploit primarily the information extracted
from this AP as it provides the most accurate location information, while minimizing
the contribution of unreliable information from some of the NLOS APs. The results
are shown in Figure 4.9(a). Clearly, UbiLocate achieves a significant median accuracy
improvement of around a factor of 2 compared to state-of-the-art algorithms for both
UbiLocate versions. Specifically, UbiLocate’s median error is 0.75 m while for SPRING,
FUSIC and Spotfi it is 2 m 2.1 m and 3 m, respectively. Furthermore, the maximum
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Figure 4.9: Localization performance of UbiLocate compared to state-of-the-art systems.
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error of UbiLocate is 3.5 m and 6 m for the [ADT] and [AT] versions, whereas the
maximum errors of SPRING, FUSIC, and Spotfi are much higher at 7.5 m, 9 m and 15.5 m,
rendering them unsuitable for many indoor location based services. While the median
errors of [ADT] and [AT] are similar, the additional AoD information used in [ADT]
significantly reduces the maximum error compared to [AT]. This superior performance
is not only related to the more accurate AoA and ToF subsystems of UbiLocate, but
also the particular localization strategy that identifies the most reliable APs and weighs
their contributions based on their estimated quality. For completeness, we also tested
UbiLocate [A], i.e., a pure AoA system which runs only on the APs without any station-
side modifications. It achieves a median error of 1.2 m.

NLOS-only Finally, we evaluate the systems in a setting, where we force all
measurement points to be in full NLOS. To this end, we remove the respective APs that
does provide LOS information, if any, i.e., for the measurement points in room 1 we remove
the AP in room 1 and test the localization performance in that room with the remaining
APs. This process is repeated for all other rooms as well. While this scenario is extreme
and LOS will be available for at least some of the locations in a regular deployment, it
gives a good indication of the expected performance when additional moving obstacles
(such as persons) in the rooms obstruct and distort the only available LOS path.

The results are shown in Figure 4.9(b). There is a small performance degradation in
localization accuracy, but UbiLocate still provides meter-level median accuracy with an
error of 1.1 m and 1.2 m for the [ADT] and [AT], respectively. In contrast, the median
errors for SPRING, FUSIC, and Spotfi are 4 m, 2.6 m and 3.5 m, respectively, around
a factor of 2 to 3 worse than UbiLocate.1 Finally, UbiLocate [A] has a median error
of 2.2 m. This good overall performance of UbiLocate in NLOS indicates that path
information from APs under obstructed LOS is valuable, if the paths can be resolved
accurately.

4.4.5. Low density scenario

Compared to the previous scenarios, the low density scenario shown in Figure 4.6(c)
is much more sparse and for half of the points the client only sees two APs. This AP
density is realistic for real-world deployments, where coverage depends very much on the
geometry of the deployment. For the points with only two APs, Fusic and Spotfi cannot
determine a location since they both need at least 3 APs within range to locate the user.
In addition, the office furniture and the people moving around produce a rich multipath
environment and dynamic channel conditions. We again first show the performance of
the individual features and then the general localization performance.

1Note that in [14] a higher NLOS accuracy for Spotfi was reported. However, their NLOS deployment
typically has around two APs with LOS per measurement point, whereas we consider as true NLOS only
points for which none of the APs are in LOS.
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4.4.5.1. Individual features

We compare the AoA and ToF estimation in this challenging case to the previous
scenarios. Again, the graphs include the raw estimates for all APs, whereas for the actual
localization, UbiLocate filters out some of the outliers.

AoA. The AoA results are shown in Figure 4.10(a) with UbiLocate obtaining a median
error of 2.7 and 8.5 degrees for LOS and NLOS settings for the [ADT] version and 4.3 and
12 degrees for [AT]. Spotfi and MUSIC have similar performance and achieve a median
error of 5.6 and 6.2 degrees for LOS and 12 and 13 degrees for NLOS, respectively. This
degradation in the LOS and NLOS performance is caused by the larger distances and the
rich multipath compared to the medium and high density scenarios.

Ranging. As shown in Figure 4.10(b), UbiLocate has an excellent median error of
0.5 m in LOS while for NLOS it achieves 2 m. FUSIC and FTM have the same median
error of 1.8 m for LOS and 2.8 and 3.4 m in NLOS, respectively. UbiLocate has the lowest
maximum error of 12 m, while Fusic and FTM errors reach 18 m.

4.4.5.2. General localization

The localization errors can be found in Figure 4.11. Since Fusic cannot be applied
for all of the measurement points, its CDF curve do not reach 1, whereas SPRING and
Spotfi do since they work with just a single AP or two APs respectively. As in the other
evaluation, the [ADT] and [AD] versions of UbiLocate have similar performance with a
median error of 1 m, while Spring achieves a 4 m error and Spotfi a 4.1 m. Regarding the
highest errors, UbiLocate [ADT] and [AD] reach 10 m while SPRING and Spotfi have up
to 24 m and 29 m. As expected, the low AP density and the rich multipath environment
produce larger outliers compared to the medium density NLOS case. Similar to Spotfi,
UbiLocate [A] achieves a median error of 2.8 m. The few large outliers with UbiLocate
come from extreme points in far corners of the building that have large angles to the one
or two APs within range under NLOS. In those cases, achieving better accuracy is only
possible by deploying another AP. It is worth highlighting that UbiLocate generally deals
very well even with such a sparse scenario with a complex channel environment, a low
error in most cases. While the performance of UbiLocate is similar for the low density and
NLOS-only scenarios, the reasons are different. The NLOS-only scenario is more dense
with four APs in coverage, but none of them have a clear LOS, whereas the low density
scenario has only 2 or 3 APs to localize, but there are cases with a clear LOS. These
different effects happen to compensate each other in the specific scenarios under study.

4.4.6. Additional Considerations

Impact of MIMO and bandwidth. All the experiments described up to this point
are performed with the same 4x4 MIMO configuration with 80 MHz bandwidth. However,
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Figure 4.10: Empirical CDF for AoA and ToF error of UbiLocate compared to state-of-
the-art systems for the low density scenario for all APs.
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Figure 4.12: UbiLocate location accuracy of different configurations of (number of
antennas/bandwidth)

in principle UbiLocate can work with any hardware configuration. To characterize
the localization performance for devices ranging from low-end to high-end hardware
complexity, we evaluate UbiLocate for the following bandwidth and MIMO configurations
in the medium density testbed (LOS + NLOS). We consider three bandwidth
combinations (20/40/80 MHz) and four antenna configurations (1x1/2x2/3x3/4x4),
resulting in 12 configurations overall.

The results of this evaluation are illustrated in the box plot in Figure 4.12. Let us
first consider the 4x4 MIMO configuration. As expected, the median error rises from
0.7 m when working with a bandwidth of 80 MHz to 1 m and 1.6 m when reducing the
bandwidth to 40 MHz and 20 MHz, respectively. The worst performance is obtained
with the single-antenna system and 20 MHz of bandwidth, with a median error of 4 m
and a maximum error of 18 m. For comparison, the median error with one antenna and
80 MHz is only 1.8 m. Finally, the importance of AoA information can be seen from the
sudden drop in the median localization error when moving from the 1x1 to the 2x2 MIMO
configurations. However, decimeter-level median accuracy can only be achieved with 3x3
and 4x4 MIMO and 80 MHz, or with 4x4 MIMO and 40 MHz bandwidth, indicating that
802.11n hardware capabilities with 3x3 MIMO and 40 MHz are insufficient to achieve this
very high accuracy.

Time complexity. Time complexity plays a crucial role especially in real-time
processing. The dimensionality of the parameters and their granularity considerably
affect the time complexity of the optimization algorithm. To evaluate it, we run the
two versions of UbiLocate and Spotfi using the traces collected during the localization
evaluation. UbiLocate applies Nelder-Mead search for the five most significant paths. The
server used for this evaluation is an Intel(R) Core(TM) i7-6800K CPU with 3.40GHz and
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Figure 4.13: Time complexity for UbiLocate and SpotFi.

16 GB of RAM running MATLAB 2019a. The results are illustrated in Figure 4.13. We
observe that for 80 MHz, UbiLocate [ADT], which estimates the three path parameters,
is faster than Spotfi which only estimates two. UbiLocate [AT], which estimates two
parameters, has an execution time of half second and reduces the time complexity by 85%
compared to Spotfi. The significant difference in time complexity between [AT] and [ADT]
comes from the combinatorial complexity with respect to the number of path parameters
to be estimated. This is exacerbated by the high number of spatial streams of the
MIMO system, since the channel complexity increases with the possible transmit/receiver
antenna pairs.2 While the time complexity of UbiLocate [AT] is significantly lower than
that of [ADT], adding AoD information does reduce the maximum localization error, as
discussed in Section 4.4.4. In addition, we observe that when we reduce the bandwidth
by half, the time required to run the system is also approximately reduced by half. Our
implementation uses unoptimized Matlab code using the predefined Matlab functions.
We expect an improvement of the time complexity by a factor of 5-10 with an optimized
implementation in native C.

4.5. Related Work

Wireless localization is a very hot topic and has been widely studied both from
theoretical and practical perspectives [72]. Below, we survey the most important
approaches in the research area.

Path parameter estimators. Extracting the path parameters of the radio-
frequency signal has been largely analyzed for positioning purposes, especially in the
field of AoA estimation. Many classical algorithms such as MUSIC [32] and ESPRIT [54]
are currently used but they do not well resolve AoAs of highly correlated signals [73].
Spatial smoothing techniques allow decorrelating these signals [74,75] and provide better

2Note that if Spotfi were to consider AoD together with AoA and the path delays, its time complexity
would increase over-proportionally, since the Nelder-Mead search we use deals with the complexity increase
more efficiently than 3D MUSIC.
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performance. Compressed sensing further improves over these algorithms [33, 57, 58].
These schemes rely on a search that minimizes the difference between the overall signal and
the superimposed signals in terms of the path parameters. However, the complexity of the
algorithms is computationally prohibitive when multiple path parameters are estimated
jointly, due to the extremely high number of possible combinations. To deal with that,
UbiLocate firstly estimates the path parameters iteratively, and then refines them using
the Nelder-Mead search algorithm.

Active localization. Here, the goal is to estimate the position of the device which
sends the radio frequency signal. We can distinguish the following main approaches:

RSSI-based: The propagation losses of the radio frequency signal is modeled to
estimate the distance between transmitter and receiver. Many well-known models can be
found in the literature [17,35,76–79]. Unfortunately, this approach has been demonstrated
to provide limited accuracy compared to other approaches, as the received power depends
on many environmental factors.

ToF-based: Timestamps are used in the MAC layer together with echoing techniques
to measure round trip time [80–83], and consequently the distance between AP and the
target device. This can be extended using dead reckoning [84] to provide the user location
with only a single AP. This concept was later standardized as the FTM protocol. It was
tested in [37] and in [60], where the claimed sub-meter accuracy was validated. However,
this accuracy can usually not be achieved in rich multipath environments, whereas our
approach is better able to deal with multipath.

AoA-based: Estimating the angle of arrival from an incoming signal is a well-known
topic in the field of array processing [85]. Combining angle of arrival measurements from
several APs can provide very good localization accuracy. This was validated in [86] where
sub-meter accuracy was achieved with large antenna arrays that are not yet feasible in
Commercial Off-The-Shelf (COTS) devices. This work was extended to COTS devices
in [14] and in [55], where a two-dimensional (2D) MUSIC implementation (AoA+ToF)
is carried out, improving the performance of 1D MUSIC at the cost of increasing the
computational complexity. It has been also extended to 3D (AoA+ AoD + ToF) in [87].

Hybrid (RSSI/ToF + AoA)-based: Several systems combine angle and distance
measurements to localize a device from a single AP. SPRING [25] combines AoA and
ToF data derived from two separates hardware devices. Also CUPID [34] extracts angle
information from CSI but uses only coarse RSSI to estimate distance. UbiLocate exploits
both angle and ToF information in the same device.

NLOS. The NLOS case was rarely tackled in the past because it is an extremely
challenging problem. Having the main path partially or completely obstructed by an
object significantly complicates accurate path parameter estimation. The majority of prior
works dealt with NLOS using the high bandwidth available in ultra-wideband systems [88–
91]. For Wi-Fi there are several proposals for imaging and mapping through walls [22,56,
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90], but they need flexible high-performance hardware such as software-defined radios and
custom antenna arrays. In addition, active anchors [92,93] and reconfigurable intelligence
surfaces [94,95] help dealing with NLOS and improve positioning accuracy in NLOS cases,
but such special purpose hardware is not available in regular Wi-Fi deployments. While
several localization systems claim to tackle NLOS issues, many of them evaluated the
localization accuracy in mixed LOS/NLOS environments with a very high fraction of
available LOS paths [14,96]. None of them were evaluated under pure NLOS conditions.
To the best of our knowledge, UbiLocate is the first Wi-Fi location system that not only
works in pure NLOS scenarios, but even achieves sub-meter accuracy.

Wi-Fi testbeds. The most widely used CSI extraction tool for localization is [62]
and a lot of works build upon this platform. However, it uses the outdated IEEE 802.11n
standard, which limits the potential performance and foregoes the hardware capabilities
of new Wi-Fi standards such as 802.11ac. Designs based on software-defined radios are
appealing due to their high-quality RF hardware, flexibility, and powerful processing
capabilities of FPGAs. There are even full stack Wi-Fi implementations for 802.11a/g/n
and 802.11a/g/p available through openWi-Fi [97] and GNU Radio [98]. With such
software-defined radio systems, the clock can be sampled more accurately and with the
reduced dispersion the ToF measurements would need little or no averaging compared to
UbiLocate, whereas the CSI and thus angle estimation accuracy would be largely the same.
However, for practical real-world deployments, it is of critical importance that location
systems can be implemented on COTS devices without modification to the underlying
hardware.

4.6. Conclusions

In this chapter, we tackle the challenges of accurate wireless localization in realistic
indoor Wi-Fi deployments. While many works in the recent literature achieve excellent
performance under ideal conditions with high AP densities, we target two critical
assumptions that are key to realistic environments: i) the prevalence of NLOS paths when
estimating a device position, and ii) the scarcity of APs, i.e., “anchor” nodes with known
location. Based on these assumptions we developed UbiLocate, an IEEE 802.11ac-based
Wi-Fi location system that works with realistic AP deployment densities. UbiLocate
exploits both a refined AoA extractor and a fine-grained ToF ranging system to achieve
sub-meter accuracy even in tough NLOS conditions. Our experimental evaluation
in a number of common scenarios shows an overall improvement of the localization
performance by a factor of 2-3 compared to state-of-the-art systems, both under LOS
and NLOS conditions.



5 AX-CSI: Enabling CSI
extraction on commercial
802.11ax Wi-Fi platforms

5.1. Introduction

Technology is always evolving and wireless protocols are providing higher data rate as
well as lower latency. These improvements enable a range of new applications from virtual
reality to remote surgery, and they are possible by the improved hardware characteristics
of the latest wireless protocols. In particular, the newest Wi-Fi protocol, IEEE 802.11ax,
provides a 4x4 Multiple-Input Multiple-Output (MIMO) setting with a channel bandwidth
of 160 MHz and four times denser spectrum than its predecessor, IEEE 802.11ac, which
only supports 4x4 MIMO with 80 MHz of bandwidth. These two hardware features allow
superior accuracy of wireless localization and sensing systems.

However, all state-of-the-art works [99] were limited by the physical characteristics of
the Very-High Throughput (VHT) PHY of IEEE 802.11ac—or even older PHYs—and do
not exploit the new features from the new 802.11ax standard, like the new structure of
High Efficiency (HE) frames. This work presents the first publicly available system1 that
can extract Channel State Information (CSI) data from off-the-shelf devices supporting
the HE PHY introduced in the latest 802.11ax Wi-Fi standard, with bandwidth up to
160 MHz and 4x4 MIMO. These new features likely enable unprecedented improvements
for any CSI-based applications. To assess it, we implement a UbiLocate (the proposed
IEEE 802.11ac-based localization system in Chapter 4) version that works for the new
standard. Our preliminary results show that IEEE 802.11ax enables, as expected, a more
accurate localization performance since it improves positioning by a factor of 1.75 in Line-
Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) settings, compared to IEEE 802.1ac.

The rest of the chapter is organized as follows. We first present the different solutions
available today for CSI extraction in Section 5.6. We then introduce our system in
Section 5.2, and we compare its performance with its predecessor in Section 5.3. In
Section 5.4, we show for the first time some impressive results achieved with the new HE

1We release our CSI tool at https://ans.unibs.it/projects/ax-csi
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Figure 5.1: Overview of the CSI extraction process in the adopted architecture.
Operations are split between the D11 core and the ARM CPU and performed in the
order indicated by the arrows. When a target frame is received, the D11 core switches off
the radio (1); then, the ARM CPU reads the CSI data (2), sends them to the userspace
(3), and finally restarts the radio (4).

PHY in 802.11ax. Section 5.5 shows the details of the localization evaluation as well as
the results. Finally, we draw the conclusions in Section 5.7.

5.2. The AX-tended CSI extractor

The implementation of this new CSI extraction tool has been inspired by our previous
work on 802.11ac [100]. More specifically, we ported the tool we developed for the
Broadcom 4365 chipset and adapted it for the new Broadcom 43684 802.11ax chipset.
The reference platform is the Access Point (AP) RT-AX86U, developed by Asus, which
incidentally is the successor of the RT-AC86U, the previous reference for our 802.11ac
CSI extractor. However, adapting the tool to 802.11ax required significant modifications.

Figure 5.1 shows the classic FullMAC architecture adopted by Broadcom. All the
802.11-specific functions are managed internally by the chipset; on the Host, the main
Linux operating system only configures the radio and exchanges data through the top
DMA interface in the form of Ethernet-like traffic. Inside the wireless card, operations
are split between the ARM CPU and the D11 microcontroller. The ARM CPU runs
the “Wi-Fi OS” that controls all the functions that are not time-critical while the D11
microcontroller manages time-sensitive operations, like channel access and generation of
reply frames. In our previous 802.11ac tool, CSI extraction is entirely managed by the
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Figure 5.2: Layout in the PHY table of core #0 of the data associated to every OFDM
subcarrier for a 160 MHz VHT frame using 2x2 MIMO. Only two spatial streams are
reported here; four of them will require up to 8192 values.

D11 core: when a new target frame is decoded by the underlying hardware, i) it switches
off the receiving circuitry to freeze the CSI data; ii) it extracts the CSI data from the PHY
and pushes it to the ARM CPU in the form of additional frames following the original
payload; and iii) it finally restarts the radio receiver. No delays occur with this approach,
and CSI data flow from the bottom to the top through the vertical double arrows in
Figure 5.1 on the right. Unfortunately, we could not directly port this approach from the
old 4365 to the new 43864 chipset. In the latter, in fact, the ucode memory is already
almost full because of the complexity of 802.11ax operations. There is room only for a
few instructions inside the main loop, and the ARM CPU must now perform most of the
CSI-related operations.

We will now describe in detail how the original 802.11ax architecture has been modified
to extract the CSI, with reference to Figure 5.1. First, we patched the D11 core to react
to frames with specific content only, e.g., to a specific MAC address or frame control type.
When a new target frame is received, the D11 core stops the radio (1) and no other frames
can be received from now on. Then, the frame is pushed through the Rx FIFO towards
the memory of the ARM CPU as it would usually happen in the standard architecture.
We modified the main function in the Wi-Fi OS that processes incoming frames. When
the frame coming from the Rx FIFO is detected, a new function is called to extract the
CSI data from the PHY (2), embed it into one or more crafted UDP datagrams, and
deliver it to the Host through the DMA interface (3). An application running on the
main CPU of the Host receives the UDP datagrams containing the CSI and stores them
into a packet trace. Finally, once all the CSI data are sent to the Host, the modified
function in the Wi-Fi OS re-enables the radio to receive new Wi-Fi frames (4). As we
will see later, performing all these operations in the ARM CPU rather than in the D11
core is slower, and in general it reduces the CSI throughput of the platform.
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Table 5.1: Mapping of OFDM subcarriers to memory indices for the first PHY table for
a generic receiving radio core. For spatial stream k, the corresponding PHY table starts
at location k · 2048.

PHY Bandwidth Subcarriers  Memory indices
20 MHz 64  [0, 64)

VHT, HT 40 MHz 128  [0, 128)
and Legacy 80 MHz 256  [0, 256)

160 MHz 512  [0, 256) and [1024,1280)
20 MHz 256  [0, 256)
40 MHz 512  [0, 512)
80 MHz 1024  [0, 1024)

160 MHz 2048  [0, 2048)

HE

5.2.1. CSI data layout

Like in the previous 802.11ac chipset, CSI data are organized into four PHY tables,
one for each of the four radio cores. However, the structure of the tables is different, as it
accounts for the higher number of Orthogonal Frequency-Division Multiplexing (OFDM)
subcarriers available in the HE PHY introduced with IEEE 802.11ax.

First of all, our preliminary analysis revealed that each PHY table now holds up to
8192 complex values: trying to read more leads to crashing the system. This number
corresponds exactly to the maximum number of subcarriers expected in a 160 MHz HE
frame with 4x4 MIMO, since every single stream can have up to 2048 subcarriers. Further
investigation allowed us to map the data in the PHY tables to specific OFDM subcarriers,
as shown in Table 5.1, where we report the offsets for a generic spatial stream; in general,
CSI data for the k-th stream start at offset k· 2048. We have determined the CSI data
layout by dumping the content of the PHY table under different conditions: i) by tuning
the radio on different bandwidths; ii) by receiving frames with different bandwidths; iii)
with different types of encodings (i.e., VHT or HE); iv) and MIMO configurations. Since
UDP datagrams are limited to 1500 B, we can embed no more than 256 CSI values in
each datagram reporting the CSI to the user space. While one single UDP datagram is
sufficient to report one spatial stream of a 80 MHz VHT frame, two are required for each
spatial stream of a 160 MHz VHT frame. This implies that 32 datagrams are generated
when extracting 160 MHz VHT CSI with 4x4 MIMO, which increases to 128 for HE frames
of identical configuration.

Interestingly, the layout of the CSI data in the PHY tables is rather peculiar, especially
for 160 MHz-wide VHT transmissions, as shown in Figure 5.2. The 160 MHz spectrum is
not reported in contiguous memory locations, but it is split into two halves corresponding
to the lower and higher 80 MHz parts of the spectrum. This gives us a useful insight
into the implementation of the radio subsystem on the chipset: rather than a single
radio working at 160 MHz, the system likely employs two radios at 80 MHz, each one
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providing on half of the entire band. A similar mechanism has been already observed on
the old 802.11ac 4365 chipset. Even though this chipset officially supports only 80 MHz
bandwidth with 4x4 MIMO, we experimentally extracted 160 MHz CSI with 2x2 MIMO by
assigning different radios to different parts of the spectrum. The new chipset apparently
uses the same principle but doubled the number of radios in order to achieve 4x4 MIMO
at 160 MHz. We believe that the rationale behind this implementation is that the same
circuitry should be able to manage not only full 160 MHz transmissions, but also 80P80
configurations in which two 80 MHz signals can be located everywhere in the 5 GHz band.
In addition, using two radios with smaller bandwidth might be cheaper than implementing
a single radio with very large bandwidth.

5.2.2. Testing the CSI extraction platform beyond 80 MHz with SDRs

Our experiments require crafting Wi-Fi frames with precise features in order to
showcase the performance of the novel CSI extraction tool. For this reason, we resort
to Software-Defined Radio (SDR) platforms for some of the tests presented in the next
sections. While we also added functions to the CSI extraction tool to inject HE-encoded
frames through the Asus AP, we cannot finely control their timings. SDRs radios, instead,
can transmit frames with very accurate timings: still, transmitting 160 MHz frames
requires quite expensive hardware. For instance, the USRP N300 SDRs manufactured
by Ettus Research, which is already an expensive solution, can manage the transmission
of Wi-Fi frames up to 80 MHz. We present here a workaround that allows us to use a
couple of these devices to transmit up to 2x2 160 MHz HE-encoded frames, or alternatively
four much cheaper USRP N210 SDRs to transmit similarly encoded frames but limited
to a 1x1 spatial configuration.

In Figure 5.3 we focus on the first solution and we show how we can jointly use two
N300 SDRs radios to transmit 160 MHz Wi-Fi frames. Each board is responsible for
the transmission of half of the signal, i.e., either the lower or higher 80 MHz portion of
the complete frame spectrum. When properly synchronized, the two halves sum up and
generate a valid 160 MHz OFDM frame.

In Algorithm 1, we summarize the steps needed to generate the two 80 MHz portions
of the frames in MATLAB using the WLAN Toolbox. By default, MATLAB creates
a wide-band Wi-Fi signal by generating the corresponding I/Q samples that should be
transmitted at 160 MS/s. Our script parses the MATLAB vector with the I/Q samples
and recovers the complete sequence of OFDM symbols. Knowing the specific format of
each OFDM symbol, the script applies to it an FFT and obtains the original OFDM
constellation spectrum that is composed of 512 subcarriers in a VHT frame, or 2048 in an
HE frame. Splitting each OFDM symbol into two semi-symbols in the frequency domain
is straightforward as we only have to consider half of the total subcarriers, either in the
lower or in the higher part of the spectrum. At this point, our script simply applies an
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Figure 5.3: SDR setup for transmitting 160 MHz frames with 2x2 MIMO using two SDRs
with smaller bandwidth. The SDRs need to be externally synchronized.

Algorithm 1: Split a 160 MHz Wi-Fi frame generated with the MATLAB
WLAN Toolbox into two 80 MHz semi-signals. The spectrum of each semi-signal
corresponds to the lower/higher part of the spectrum of the original signal.

Require: 160 MHz Wi-Fi frame at 160 MS/s
Ensure: Two 80 MHz signals at 80 MS/s whose joint spectrum is equivalent to the one

of the input signal
1: Separate OFDM symbols & remove guard interval
2: Apply FFT to each OFDM symbol
3: Split left/right (low/high) band
4: for each semi-signal do
5: Apply IFFT on each half-symbol
6: Add back guard interval
7: end for

IFFT to each semi-symbol and, after adding back the guard interval as dictated by the
standard, it ends up with two semi-signals, each one having half of the spectral content
of the original 160 MHz signal.

In order to transmit a decodable Wi-Fi frame, the two semi-signals must be
transmitted by two separate USRP N300, one tuned to the central frequency of the lower
80 MHz portion of the spectrum and the other tuned to the center of the upper 80 MHz
one. We cannot, in fact, use the two TX chains of a single USRP N300 as they cannot be
tuned to different frequencies by design. While Figure 5.3 also shows that two separate
SDRs—each with two TX chains—allow transmitting 2 spatial streams, we only use a
single stream configuration in this work. Needless to say, the two semi-signals must be
synchronized: in our experiments, we achieve this by using the clock distribution module
named Octoclock, also manufactured by Ettus Research.
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5.3. CSI Extraction Performance

To cope with the limited amount of space available in the ucode memory of the new
D11 core, we had to move a large part of the CSI processing code to the memory of the
ARM processor. Even though the ARM CPU is quite fast, the concurrence with the D11
core and the increased latency have a detrimental effect on the system’s performance.

In the old CSI extraction system [100], the D11 core had complete control over the data
transfer operations. Once a target frame was detected, the D11 core itself configured the
deaf mode on the radio hardware and immediately pushed the CSI data to the upper layers
of the processing chain. However, due to the space constraints in this implementation,
now the D11 core can only be configured to set the deaf mode on the radio, and we have
to wait for a trigger that indicates that the data of a frame are available in the ARM
CPU’s memory before proceeding with the CSI extraction. While waiting for this trigger,
the Wi-Fi chipset remains idle.

In order to estimate the impact of waiting for the complete transfer to the ARM
memory on the system’s performance, we set up an experiment to measure this latency. In
this experiment, the ARM CPU does not extract any CSI data nor sends UDP datagrams
to the user space, but just restarts the receiver. We use the SDR to transmit identical
frames multiple times with a fixed time delay between successive frames. The fixed delay
is reduced every time we repeat the experiment until we find that not all the transmitted
frames have been received. This implies that the delay between two frames is too small
and the receiving radio has not yet been restarted. The minimum delay for which all the
frames are received is 50 µs, i.e., this is the transfer latency we are trying to determine.
This is a considerable amount of time, given that some frames with a single data symbol
(encoded with short guard interval at 80 MHz) can last as little as 43.6 µs. In Figure 5.4,
we indicate this result with the label NO-OP.

Then we repeat the same experiment to measure the latency introduced by the process
of pushing the CSI to the user space. We do not extract CSI data yet, but we just craft
a single UDP datagram that it is sent to upper layers through the DMA interface as
seen in Figure 5.1. We repeated the experiment for different sizes of the UDP datagram
corresponding to the size it would have when receiving 20 MHz, 40 MHz or 80 MHz VHT
frames respectively. In all cases, we measured a latency of 68 µs that is independent of
the datagram size. This is reported in Figure 5.4 with the label NO CSI.

Finally, we run the experiment with the CSI extraction mechanism in place. We
measure the latency for different number of extracted subcarriers, from a minimum of 64
(VHT frame at 20 MHz, 1x1) up to a maximum of 32768 (HE frame at 160 MHz, 4x4). We
notice that when the CSI data fit into a single UDP datagram (256 subcarriers or less) the
delay is equal to 95 µs plus a quantity that is proportional to the size of the CSI (625 ns
per subcarrier). The additional delay of 27 µs with respect to the one measured in the NO
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Figure 5.4: The latency introduced by the CSI processing chain depends on the number
of extracted subcarriers.

Table 5.2: Performance comparison between the previous 802.11ac tool (Nexmon CSI)
and the 802.11ax extractor (AX-CSI) in terms of CSI extracted per second.

encoding VHT VHT VHT VHT VHT HE
BW [MHz] 80 80 80 80 160 160

MIMO 1x1 4x1 1x4 4x4 4x4 4x4
# subcarriers 256 1024 1024 4096 8192 32768

NexmonCSI 8223 3034 2927 168 – –
AX-CSI 3348 1101 1087 295 148 37

CSI case is due to the necessity of stopping/restarting the D11 core before/after reading
the PHY tables. When more UDP datagrams are generated, we can see in Figure 5.4
that the latency increases almost linearly up to the maximum 32768 subcarriers.

We then run another experiment to have a more convenient comparison of the
performance of AX-CSI with respect to Nexmon CSI, which is the previous tool developed
for 802.11ac. In Table 5.2 we report the number of CSI extracted each second for different
configurations using the VHT PHY. Since the old tool cannot extract CSI from the latest
HE PHY (and from 160 MHz VHT frames neither, by default), for this configuration we
only report results for the new tool. Overall, the new tool performs slightly worse in terms
of CSI captured per second than the previous one for 802.11ac. For instance, the old tool
can extract almost three times more CSI than the new one from VHT frames transmitted
at 80 MHz with different configurations. However, the situation is different when more
data have to be processed, like in the 80 MHz 4x4 case where AX-CSI extracts almost
twice the data extracted by Nexmon CSI in the same time span. This is due to a hardware
bottleneck in the previous implementation in which D11 core was directly pushing CSI
data to the DMA interface. Although the new system appears to be slower than the
old one for several configurations, we believe that it can extract CSI measurements at a
sufficiently high rate to enable many interesting wireless applications.



5.4 Results with HE PHY 69

6 7 8 9 10

Frequency [MHz]

0

500

1000

1500

2000

A
m

p
lit

u
d

e

VHT PHY

HE PHY

Figure 5.5: Detail of the CSI of 20 MHz frames. The spectral resolution achieved with
HE PHY is four times larger than with VHT PHY. Amplitude is measured in arbitrary
units as reported by the tool.

5.4. Results with HE PHY

In this section, we investigate some interesting features of the CSI extracted using our
tool from 802.11ax frames based on the new HE PHY. We start by showing in Figure 5.5
a comparison between the CSI extracted from 20 MHz frames using the VHT PHY and
HE PHY, respectively. Both frames are transmitted from the same SDR connected by
cable to one receiving radio of the Asus AP. Here, we zoom into a small portion of the
band to better appreciate the increased spectral resolution obtained with HE encoding
(red dots) with respect to the VHT encoding (blue crosses). The former, in fact, adopts
a four-times smaller subcarrier spacing, i.e., 78.125 kHz instead of the usual 312.5 kHz.
Higher spectral resolution is key to accurately model the frequency response of channels
with steep variations between adjacent subcarriers. We also notice that the HE spectrum
has a much smaller guard band (see Figure 5.5, on the right) which actually increases
the amount of “useful” bandwidth. With respect to sensing applications, this slightly
wider spectrum available in HE PHY may provide better time-of-flight or angle-of-arrival
estimates even in the 20 MHz band.

We then ran some experiments to showcase the advantages mentioned above
introduced by HE encoding. To this end, (i) we generated with MATLAB a 40 MHz HE
frame; (ii) we filtered the corresponding sequence of I/Q samples with a stop-band complex
filter; and (iii) we transmitted the signal using cables from the SDR to the target Asus AP
from which we collected the CSI as usual. We repeated this experiment decreasing the
filter width each time as we show in Figures 5.6(a) to 5.6(d). For Figures 5.6(a) and 5.6(b)
we chose quite large stop-bands, respectively 8 MHz and 2 MHz. The specific frequency
response of the filter can be determined with high fidelity in the collected CSIs: this means
that even high frequency components in the CSI profile can still be discriminated at the
receiver. In the last two figures at the bottom, instead, we chose very thin stop-bands,
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(a) Wide filter.
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(b) Thin filter.
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(c) Micro filter.
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(d) Nano filter.

Figure 5.6: CSI extracted from 40 MHz HE frames when the transmitted frames are
arbitrarily pre-distorted using filters with a particular frequency response. CSI amplitude
is normalized to 1 outside the stop-band region.



5.5 IEEE 802.11ax localization performance 71

-1024 -768 -512 -256 0 256 512 768 1023

Subcarrier #

0

200

400

600

800

1000

1200

1400

1600

A
m

p
lit

u
d
e

160 MHz

20 MHz

20 MHz

Figure 5.7: Spectrum of a 160 MHz frame overlaid with that of the eight constituting
20 MHz channels.

respectively 400 kHz and 200 kHz, which are respectively slightly larger and smaller than
the subcarrier spacing in the case of VHT-encoded frames, to make the experiment more
challenging. In the first case the shape of the CSI is still good enough to roughly represent
the filter response. In the second case, instead, the width of the filter response becomes
too small to be captured accurately. However, there are still two subcarriers that provide
some hints about the central frequency of the filter.

In Figure 5.7 we show the CSI from a 160 MHz HE frame transmitted from the SDR
over the air. We immediately notice that the wireless channel between transmitter and
receiver appears to be extremely selective in frequency. The level of details that is available
with such a large bandwidth makes the extraction tool extremely interesting for sensing
experiments where minor variations in the environment can be observed only in some
portions of the spectrum; with our tool, we can capture all of them at once. This is
highlighted in the figure where we also overlay the CSIs of the 8 individual 20 MHz HE
subchannels, properly normalized, each with its 256 subcarriers. Apart from the obviously
different behavior at each channel boundary (caused by the guard bands), the 20 MHz
subchannels closely match the eight times larger 160 MHz spectrum.

Finally, we report in Figure 5.8 a visualization of the full CSIs extracted for one
160 MHz HE frame with 4x4 MIMO, transmitted by another Asus AP. With our tool
we can capture all the sixteen resulting CSI profiles for an astonishing number of 32768
subcarriers in total. To the best of our knowledge, this is the first CSI extraction tool
that is capable of extracting such a huge amount of data from a single Wi-Fi frame.

5.5. IEEE 802.11ax localization performance

The new IEEE 802.11ax hardware features such as channel bandwidths up to 160MHz
(before 80MHz for IEEE 802.11ac) and a much more dense spectrum, i.e., more available
subcarriers, enable a more precise localization performance. In particular, doubling the
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Figure 5.9: Scenario for the IEEE 802.11ax localization evaluation. The red dot represents
the AP position and the blue dots the client positions.

bandwidth results in doubling the time resolution to discriminate two incident signals
that arrive close in time. This is highly beneficial in multipath environments since the
NLOS paths may arrive close in time to the direct path, and the estimation of the latter
one is typically contaminated by the influence of NLOS paths. This contamination can be
mitigated by increasing the time resolution. Thus, we expect to have an improvement by a
factor of two in the Time of Flight (ToF) accuracy using an IEEE 802.11ax implementation
compared to IEEE 802.11ac. For the Angle of Arrival (AoA) case, the number of antennas
does not increase compared to 802.11ac, but there are more subcarriers which results in a
more robust AoA estimation, as seen in Equation (4.2). Hence, we expect an improvement
in the AoA accuracy too.

To evaluate the potential improvement in the position accuracy that 802.11ax enables
compared to 802.11ac, we implement a UbiLocate (the proposed localization system in
Chapter 4) version that works with the new standard. In particular, we enable the Fine
Time Measurement (FTM) like protocol to work with the 802.11ax devices and we modify
the UbiLocate AoA estimator to support the new hardware characteristics. We carry out
preliminary measurements in the scenario depicted in Figure 5.9 which is one of the
scenarios that we used to evaluate UbiLocate in Chapter 4. This scenario contains 50
points (blue points), 25 for LOS and another 25 for NLOS. The CSI measurements of
those points are measured by the AP in room 1 (red point). This scenario contains fewer
points and APs than in the last chapter since this evaluation is in an early stage and
we show a preliminary localization evaluation. To provide a deep assessment, we first
show the performances of AoA and ToF separately. We then show the overall localization
performance.
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Figure 5.10: Empirical CDF for AoA and ToF errors.

AoA: The AoA results are shown in Figure 5.10(a). The performance of both, 11ax
and 11ac, are extremely similar and accurate for the LOS case. They both get a median
error of 1.1 degrees and maximum errors of 3 degrees and 4.7 degrees for 11ax and
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11ac, respectively. Regarding NLOS, 11ax and 11ac achieve median errors of 3.6 degrees
and 6.1 degrees and maximum errors of 22 degrees and 140 degrees, respectively. The
maximum error of 11ac is caused by selecting an NLOS path as the direct path instead
of selecting the obstructed direct path. This might happen in challenging settings where
the NLOS paths are much stronger than the direct path and the estimator cannot resolve
the latter one. But, exploiting the new hardware features of 11ax enables a superior
multipath resolvability since the 11ax AoA estimator is able to extract the obstructed
direct path in the hardest cases, which reduces outliers considerably. This is beneficial
for applications that demand precise localization everywhere and are susceptible to larger
errors.

ToF: The ToF results are shown in Figure 5.10(b). 11ax provides two times more
accurate performance than 11ac because 11ax gets a median error of 17 cm while 11ac
achieves 35 cm in LOS settings. This validates the ToF theoretical improvement by a
factor of two that comes from doubling the bandwidth. Regarding NLOS, 11ax also
provides a superior performance since it achieves a median error of 0.7 m while 11ac
achieves 1 m. It is worth highlighting that 11ax minimizes the largest errors as the
maximum error of 11ax is 2.1 m while the one of 11ac is 4.2 m. Unfortunately, the NLOS
ToF improvement does not correspond to a factor of two and we report an improvement
of 1.5. Theoretically, doubling the bandwidth results in doubling the resolution in
discriminating two paths that arrive close in time. However, in NLOS cases, there might
be more than two paths that arrive close which makes the resolvability of the direct path
more challenging. In addition, the NLOS paths are likely to be stronger than the direct
path which also complicates its discrimination. All of these in combination make that the
improvement in NLOS does not correspond to the theoretical improvement.

General localization: The localization performance is reported in Figure 5.11.
The LOS median errors are 37 cm and 21 cm for 11ac and 11ax, respectively. This
corresponds to a localization improvement by a factor of 1.75. Regarding NLOS, 11ax
provides a median improvement by a factor of 1.75 as well since 11ax gets a median
error of 1.2m whereas 11ac gets 2.1 m. This indicates that doubling the bandwidth does
not completely result in two times more accurate overall localization performance but
it is close to the theoretical factor. We would like to emphasize that a LOS median
error of 21 cm is an impressive achievement. This accuracy is close to the precision that a
system using massive channel bandwidths, in order of gigahertz, and much larger antenna
arrays can get. These hardware configurations are utilized in Milimiter-wave (mmWave)
communications and practical mmWave localization works [101–103] reported median
errors in terms of 10-20 cm. Finally, the reported NLOS evaluation of the previous
chapter, in particular in Figure 4.9(b), shows that 11ac achieves an NLOS median error
around 1 m while this evaluation shows 2.1 m. This degradation in the performance is
caused by having only one AP for positioning in this preliminary evaluation, while in the
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Figure 5.11: Empirical CDF for localization errors.

other evaluation the number of available APs was four. Hence, we expect to get two times
more precise 11ax NLOS performance by adding up to four APs.

5.6. Related work

The CSI is a key element in Wi-Fi communications. However, most off-the-shelf
devices just use the CSI internally in the PHY section of the Wi-Fi system, and only a
few of them can report them to the user by default.

This work stems from Nexmon csi, a popular csi extraction platform for 802.11ac
Broadcom chipsets [100]. As of today, this is one of the most comprehensive tools so far
for CSI analysis, enabling the CSI extraction from 802.11ac frames (supporting both VHT
PHY and 4x4 MIMO) on a wide range of Broadcom chipsets. This platform was extended
into a Wi-Fi 802.11ac-based localization system [2] that deals with NLOS settings. The
authors added more features such as obtaining the timestamps of received Wi-Fi frames
and a methodology to tackle hardware imperfections that make the device unreliable for
localization purposes.

The literature suggests that the most popular chipset used for CSI-based sensing
research is the Intel Wi-Fi Link 5300. On this chipset, the Linux 802.11n csi Tool [104],
based on custom firmware and open-source Linux drivers, is used to access the CSI.
However, the spectral resolution of the CSI is limited to 30 values corresponding to
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“subcarrier groups” rather than one value for each OFDM subcarrier. A complex value
with signed 8-bit real and imaginary parts is reported for each group, which means
that each group roughly corresponds to two subcarriers for 20 MHz channels and four
subcarriers for 40 MHz channels. Recently, a newer tool was released for an 802.11ac
Intel platform, specifically for the Intel 9260 card [105]. However, this card has only
two antennas; thus, the best MIMO setting is 2x2, limiting research based on the angle
of arrival and departure. By contrast, our csi extractor tool enables 4x4 MIMO, which
allows for discriminating more paths in the space domain.

CSI data of individual subcarriers can be extracted for Qualcomm Atheros chipsets
using the Atheros csi Tool [106]. This platform is entirely implemented in software and
builds on top of the open-source Linux kernel driver ath9k, supporting many different
chipsets like the AR9580, AR9590, AR9344, and QCA9558. Unlike the Intel Tool, the
Atheros one offers finer quantization of the data extracted for each subcarrier, as both
the real and the imaginary part take value in the range of integers [−512, 512]. However,
also this platform is limited to 802.11n. To the best of our knowledge, newer Qualcomm
Atheros QCA988x chipsets, supporting 802.11ac and powered by the ath10k wireless
driver, still cannot be used for CSI collection as no open-source nor proprietary CSI
extraction platforms were released.

Quantenna Communications, a chipset manufacturer for high-end APs, offers another
solution for CSI analysis. Some recent papers [107, 108] revealed that some Quantenna
chipsets could report the CSI for 802.11ac frames. However, there is little knowledge
about the performance of this platform since it is provided only to customers and system
developers.

Lastly, it is worth mentioning alternative solutions based on SDRs. Well-known
SDRs like the Wireless Open-Access Research Platform (WARP) [109] and the Universal
Software Radio Peripheral (USRP) [110] could be used in principle for collecting CSI.
Such platforms combine high flexibility with large bandwidths, as some radio front-
ends can achieve 160 MHz and even more. Implementing a real-time Wi-Fi stack in
software is, however, not straightforward. Recently, a project named openwifi developed
on Field-Programmable Gate Array (FPGA) an open-source implementation of the Wi-
Fi stack [111] that allows CSI analysis and manipulation. However, openwifi supports
only 802.11n at 20 MHz with no multiplexing (there is actually an ongoing effort to add
support for 2x2 MIMO). Moreover, the major drawback of using SDR platforms is that
they are usually orders of magnitude more expensive than consumer Wi-Fi devices; hence,
their usage is often confined to specialized research labs.
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5.7. Conclusions

The capability to collect and analyze CSI data from real wireless network deployments
is currently driving many research activities. In particular, the interest of many research
groups is focused on opportunistic Wi-Fi sensing where it is important to collect CSI data
at a very high rate, that cover as large a portion of the spectrum and as many subcarriers
as possible. In this chapter, we presented the first tool to collect the most accurate CSI
ever, thanks to its compatibility with the latest generation Wi-Fi standard IEEE 802.11ax.
Our tool supports CSI collection from transmissions with up to four spatial streams and
up to 160 MHz of spectral bandwidth per stream, extracting up to 32768 subcarriers
per incoming frame. To further validate the usefulness of the platform, we carry out a
preliminary evaluation to measure the localization accuracy that 802.11ax can enable.
Our results show that IEEE 802.11ax provides superior performance compared to its
predecessor, IEEE 802.11ac. In particular, the new standard improves the localization
accuracy by a factor of 1.75 in LOS and NLOS settings. We believe that our system is
an important contribution to the research community and has the potential to become a
widely adopted tool.



6 Respiration Rate Estimation
using Commodity Wi-Fi

6.1. Introduction

As seen in previous chapters, localization needs to extract location information of the
user from the direct path to provide new services like indoor navigation, tracking and
many more applications. Sensing applications, instead, require extracting the Non-Line-
Of-Sight (NLOS) paths as they convey location information of persons and/or objects that
are present in the environment. This is beneficial for security purposes as intruders can be
detected [112,113]. In addition, sensing also aims at understanding small variations of the
path parameters of NLOS paths which result in detecting small displacements of reflectors.
Hence, a system can detect abnormal behavior [114] of persons. Moreover, it is also
helpful in-home care applications since sensing allows to detect falling [115,116], recognize
human activities [117–119] and monitor vital signs [120–122]. Specifically, respiration rate
estimation using wireless signals is appealing as it does not require any intrusive equipment
whereas specialized respiration equipment needs physical contact with the patient that
may affect negatively the estimation. This is particularly beneficial for patients that suffer
from sleep apnea, where patients stop breathing regularly while they are sleeping. We
thus focus on respiration estimation using wireless signals.

Respiration can be represented as a periodic signal. In every cycle, the chest enlarges in
the inhalation phase followed by a pause and then the chest compresses in the exhalation
phase followed by another pause. Hence, the path of the signal that bounces off the
human chest changes its length according to respiration. In particular, the displacements
make the length of the path a bit larger or smaller. These small variations of the length
of the path result in phase shifts in the complex attenuation which lead to obtain the
respiration signal. State-of-the-art schemes exploit the interaction between static paths,
i.e., paths whose complex attenuation values do not change over time, and the path of the
chest, which is a dynamic path. This interaction produces changes in the amplitude
of the Channel State Information (CSI) measurements so that the respiration signal
can be recovered. However, the path of the chest is considerably weaker compared to

79
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the static paths. Therefore, the changes in the amplitude might be almost negligible
and the extraction of the respiration signal may fail. We propose, instead, to resolve
all the multipath components so that we can remove the contamination of static paths
and extract the path of the chest relatively free of interference. Hence, we obtain the
respiration signal as it is contained in the phase of the complex attenuation of the path
that comes from the chest. We implement this approach in a Commercial Off-The-
Shelf (COTS) Wi-Fi testbed. Our preliminary results show that accurate respiration rate
estimation is possible with a low rate of error by decomposing the multipath components.

This chapter is organized as follows. We explain in Section 6.2 how a sensing system
can exploit NLOS paths to estimate the position of reflectors. Section 6.3 demonstrates
how the small variations in the length of the path of the chest caused by the respiration can
be used to extract the respiration signal. In the same section, we describe the proposed
respiration signal extractor and rate estimator. We provide the details of the preliminary
measurements as well as the results of the respiration evaluation in Section 6.4. Finally,
Section 6.5 concludes this chapter by summarizing our findings.

6.2. Passive localization

The first step forward from active localization to sensing is to passively localize
objects such as persons in the environment. During the previous chapters, we assume
active localization, i.e., the client sends a radio-frequency signal so that a system extracts
location information from the direct path of the signal to estimate the client position. In
contrast, passive localization does not require the person to carry a wireless device. The
person can be passively localized by estimating position information from the reflection
that the person creates when the signal bounces off the human body. Active localization
requires extracting the direct path which is the path that goes from the client to the
Access Point (AP), passive localization, instead, requires extracting the reflected paths.

To this end, a transmitter and a receiver establish a link and the transmitter sends a
signal which propagates through a multipath channel. The received CSI contains not only
the location information from the direct path but also from paths that reflected off objects
or persons in the environment. Figure 6.1 shows an example of passive localization. In this
example, there are three paths. The first one is the direct path, p1, and two NLOS paths
which are p2 and p3. As seen in the figure, all the paths have the following parameters.
We denote Angle of Arrival (AoA) as θrx, Angle of Departure (AoD) as θtx and the
path delay as τ . We can passively localize the person by triangulation. In particular, a
system needs to compute the position of the vertex that corresponds to the point where
the signal bounces off the human body. To do so, the system can solve the triangle and
get the person position by applying simple algebra theorems knowing the position of the
transmitter and the receiver, the AoA or the AoD and the τ of the direct path (p1) as



6.3 Breathing detection 81

Path1 (p1)

Path 2 (p2)

Path 3 (p3)

𝜏1

𝜏3

𝜏2

𝜃𝑡𝑥,3

𝜃𝑡𝑥,1

TX RX

𝜃𝑡𝑥,2

𝜃𝑟𝑥,3

𝜃𝑟𝑥,1

𝜃𝑟𝑥,2

Figure 6.1: Example of passive localization.

well as p2.

6.3. Breathing detection

Sensing goes beyond localization and it aims at understanding small variations in
reflected paths that can be used for respiration rate estimation. Breathing can be
represented as a periodic signal. In every cycle, the chest enlarges in the inhalation
phase followed by a pause and then the chest compresses in the exhalation phase followed
by another pause. These displacements change the length of the path of the signal that
bounces off the human chest, i.e., the path becomes a bit larger or smaller. These small
variations of the length of the path result in phase shifts in its complex attenuation.
Figure 6.2 illustrates this fact. In this example, the transmitter sends a Wi-Fi signal which
propagates through a multipath channel. One of the paths reflects off the human chest
and the length of this path gets shorter for the inhalation and longer for the exhalation.
Since breathing is a periodic signal, we can model the path difference as well denoted
d(t). Hence, we express the phase shift introduced by d(t) to the complex attenuation of
the path that comes from the chest as follows:

e−2jπ
d(t)

λ , (6.1)

with λ is the wavelength of the radio-frequency signal.
To the best of our knowledge, the very first attempt in respiration rate estimation
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Figure 6.2: Example of how the path length is affected by the displacement of the chest

was the system [118] which is based on the received signal strength. However, the
signal strength is usually affected by environmental factors that degrade the performance.
Therefore, this system requires the patient to hold the device close to the chest to achieve a
reliable respiration rate estimation. More accurate approaches have been developed using
CSI data. In particular, [120–122] have successfully exploited differences of the amplitude
of the CSI measurements over time to extract the respiration signal. In addition, the
authors in [123, 124] have introduced the Fresnel zone model as a theoretical model to
explain how static paths and the path that comes from the chest interact with each other.
This interaction results in changes in the amplitude according to the path difference,
d(t). Hence, these amplitude changes can be used to recover the respiration signal. This
interaction is expressed as:

|H|2 = |Hs|2 + |Hd|2 + 2|Hs||Hd|cos(α) , (6.2)

where | · | represents the absolute value, H is the overall received channel, Hs is the sum
of channels from statics paths, Hd is the channel introduced by path of the chest and α

is the phase difference between Hs and Hd.
The works mentioned above recover the respiration signal using the difference in the

amplitude over time which is caused by the interaction between static paths and the path
that comes from the chest. However, this interaction might not provide a respiration
signal clean enough since the power of the dynamic path could be considerably weaker
and the respiration signal would not be recovered. For instance, consider the example
previously presented in Figure 6.2 which illustrates this fact. All the paths that arrive
at the receiver interact with each other, but only the path that reflects off the chest
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provides the respiration signal. Nevertheless, this path is likely to be masked by the
strongest paths, in particular by the direct path. To avoid it, MultiSense [125] gets a
CSI reference measurement that contains the information from static paths to further
remove them. However, this limits its usability because this approach requires getting a
CSI measurement per room in advance. Another approach tries to isolate the path of the
chest by getting a larger bandwidth synthesizing several Wi-Fi channels [126], which is
not supported by COTS devices out of the box.

State-of-the-art schemes have dealt with the interference of static paths, but they
might not be suitable in practical scenarios. Hence, we propose to remove the interference
by resolving all the paths so that the path of the chest is accurately extracted. Therefore,
the respiration signal can be recovered since it is contained in the phase of the complex
attenuation of the path of the chest. To do so, we apply the algorithm proposed in
Section 4.2.1 to resolve all the multipath components. This algorithm decomposes the
channel in several paths by applying a minimization by a Nelder-Mead search. Hence,
the paths are estimated relatively free of interference. Since respiration is a temporal
signal, we sample the channel and at every sample, we decompose the channel to get all
the paths. We then evaluate which path conveys the breathing signal and we estimate
the respiration rate.

6.3.1. Path parameter estimation

Using the wireless model in Section 2.2.1, the observed received channel in the
frequency domain is expressed as a function of the attenuation, the path delay, the AoA
and the AoD as follows:

Ĥ[k] =
P −1∑
p=0

ϕ(θrx,p)γpϕ
H(θtx,p)ψ(τp)[k] + w[k] =

P −1∑
p=0

Hp[k] + w[k] , (6.3)

with k is the k-th subcarrier, P is the number of paths, ϕ(θrx,p) is the vector of phase
shifts at the receiver Uniform Linear Array (ULA) introduced by the AoA, ψ(τp)[k] is the
path delay introduced by the propagation of the signal, γp is the complex attenuation,
ϕ(θtx,p) is the vector of phase shifts at the transmitter ULA introduced by the AoD and
w[k] is an L-dimensional white Gaussian noise in the frequency domain, where L means
the number of transmitter antennas. For convenience, we denote Ĥ[k] as Ĥ, Hp[k] as Hp,
and w[k] as w for the subsequent equations of this chapter.

Since respiration is modeled as a periodic signal, sampling the channel in time is
needed to extract the respiration signal. The observed channel at a time t is expressed as
follows:

Ĥ(t) =
P −1∑
p=0

Hpe
−2jπ

dp(t)
λ + w , (6.4)
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where dp(t) is the displacement of the p-th path. For the received paths that are static,
we assume that dp(t) is always 0.

For respiration rate estimation it is crucial to accurately extract the path of the chest
by removing the interference from static paths. To this end, we apply the path parameter
estimator proposed in Section 4.2.1 to resolve all the path parameters at every channel
sample. In previous chapters, we use this estimator to obtain the direct path even if it
is obstructed, as it also estimates weaker paths. Therefore, this estimator is capable of
extracting the path of the chest as well. Estimating the path parameters at every channel
sample results in obtaining the estimated path parameters as temporal signals:

(γ̂p(t), τ̂p(t), θ̂rx,p(t), θ̂tx,p(t)), (6.5)

In practice, the path estimator might not sort all paths in the same way for all the
time samples. The interference cancellation of the strongest paths might introduce some
energy leakage to the estimation of the weakest paths, hence sorting the paths by the
power could make that they are not arranged in the same way between different time
samples. To deal with that, we sort the paths at every sample in terms of the path delay,
i.e., the paths are arranged according to the time of arrival. This is a valid assumption
in static environments where the path delays remain the same over time.

6.3.2. Breathing signal extraction and rate estimation

The breathing signal is contained in the phase of the complex attenuation of the
path that reflects off the chest. Therefore, we need to identify this path among all the
other ones. The phase of the complex attenuation of a static path is only influenced
by white Gaussian noise while the path of the chest changes its phase according to the
respiration. Therefore, we can analyze the frequency spectrum of the phase of the complex
attenuation of the paths to detect which one conveys the respiration signal. In particular,
the frequency spectrum of a white Gaussian noise temporal signal is assumed to be flat
while the respiration signal has a clear frequency component that is stronger than the other
components. To do so, we compute a ratio between the absolute value of the maximum
peak of the frequency spectrum and the average of the absolute values of the frequency
components. If the signal is noisy, the ratio is close to 1 whereas if the signal contains the
respiration signal, the ratio will be larger. We denote the phase of the estimated complex
attenuation of the p-th path as σp(t). We apply a discrete Fourier transform to σp(t) to
estimate its frequency spectrum as follows:

ρp[w] = DFT{σp(t)} , (6.6)

where DFT{·} denotes the discrete Fourier transform.
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The ratio is given by:
rp = max(|ρp[w]|)

avg(|ρp[w]|) , (6.7)

where max(·) and avg(·) represent the maximum value and the average value of a signal,
respectively.

The path that comes from the chest is the path that maximizes the ratio:

pch = arg max
p

rp (6.8)

Then, we denote the respiration signal as:

σresp(t) = σpch
(t) (6.9)

However, the respiration signal contains noise since the multipath decomposition
algorithm might not completely remove the interference from other paths and some
noise residual might persist. The noise can be mitigated by filtering the signal. In
particular, we apply a moving average to remove high-frequency components so that we get
a smooth version of the respiration signal. We then apply an over-sampled discrete Fourier
transform to the signal to obtain its frequency spectrum. We apply an over-sampled DFT
to get more resolution in the frequency domain so that the respiration rate is estimated
with higher precision. We denote the over-sampled frequency signal as ρresp[w]. Finally,
the estimated respiration rate is the frequency component that maximizes the absolute
value of ρresp[w] as follows:

b̂′ = arg max
w

|ρresp[w]|, (6.10)

Since the respiration rate is measured in Hz, we convert it to breaths per minute (bpm)
by multiplying it by 60. The estimated rate in bpm is:

b̂ = 60b̂′ (6.11)

6.3.3. CSI cleaning

The hardware adds an artifact called Carrier Frequency Offset (CFO) that makes the
phase of CSI measurements to not be coherent between consecutive samples. The CFO is
caused by a mismatch between the frequencies of the sampling clocks of the transmitter
and the receiver. In particular, the CFO introduces a phase distortion for every received
CSI measurement. We express the channel that is affected by the CFO as:

HCF O(t) = H(t)e−2jπξCF O , (6.12)

where ξCF O is the phase distortion of the CFO.
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CFO affects to the overall phase of each CSI measurement, i.e., all the paths are
affected equally. Since a static path does not change its phase over time, its phase is only
affected by the CFO. Thus, we can remove the CFO distortion by estimating the phase
of the direct path and subtracting it to the channel. Hence, this results in the following
equation:

Hclean(t) = HCF O(t)/e−2jπσdp(t), (6.13)

with σdp(t) is the phase of the estimated complex attenuation of the direct path.
This removal does not affect the extraction of the breathing signal since the initial

phase of the complex attenuation of the path that comes from the chest does not have
any impact on the estimation.

6.4. Respiration evaluation

In this section, we conduct preliminary measurements to assess the proposed
respiration rate estimator. To this end, we deploy one transmitter and one receiver in a
room of size 10x6 m. The scenario is depicted in Figure 6.3. As Wi-Fi transceivers, we
use the Asus AC2900 RT-AC86U COTS device as in Chapter 4. We send Wi-Fi packets
periodically using a packet rate of 100Hz. At every packet, we extract the full CSI matrix
and store it for a later respiration estimation.

We ask a participant to stand in the room. In particular, the participant was placed
in the middle between the transmitter and the receiver with a separation of 1.2 m from
them. The position of the participant is represented as the yellow dot in Figure 6.3. We
also ask the participant to breathe for one minute and to count the number of breaths so
that we get the ground truth. We repeat this process two times, one time for a regular
breathing rate and another for a slower rate. The participant reported 13 and 10 bpm
for the cases of normal and slow rates, respectively.

We start this evaluation by analyzing the raw CSI measurements. Figure 6.4(a) shows
the evolution of the phase of the raw CSI. It can be clearly seen that the signal is quite
noisy and the respiration signal cannot be recognized. Figure 6.4(b) shows the evolution
of the amplitude of the raw CSI. The amplitude provides a coarse respiration signal but it
is quite noisy at some points in time and the respiration shape is missing. We would like to
highlight that the amplitude of the CSI data is the input of the state-of-the-art schemes
for respiration rate estimation. However, our analysis shows that it cannot provide a
clear respiration signal, while our approach of decomposing the channel to extract the
path from the chest leads to a much cleaner respiration signal as shown in Figure 6.4(c).

The results of the respiration evaluation are shown in Figure 6.5 and Figure 6.6 for
the normal and slow respiration rates, respectively. In particular, Figure 6.5(a) and
Figure 6.5(b) show the respiration signal before and after the filtering for the normal
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Figure 6.3: Floor plan of the scenario for the respiration evaluation.

rate. The frequency spectrum of the respiration signal can be seen in Figure 6.5(c). The
peak in the frequency spectrum corresponds to the estimated respiration rate. In this case,
the estimated rate is 13.0693 bpm. Regarding the slow rate, Figure 6.6(a), Figure 6.6(b)
and Figure 6.6(c) show the raw respiration signal, the clean respiration signal and the
frequency spectrum of the latter one, respectively. In this case, the estimated rate is
10.0493 bpm. According to the ground truth, the normal and the slow rates are 13 and
10 bpm, respectively. Therefore, the errors are below 0.1bpm which validates the precision
of the proposed scheme.

6.5. Conclusions

Going beyond localization enables applications that are useful for example, for
network management, security and health care. In particular, respiration rate estimation
using wireless signals is appealing since it does not require any specialized equipment.
During the last years, respiration rate estimation has been mainly carried out using the
overall received channel without any interference cancellation from static paths. We
propose, instead, to recover the respiration signal and to estimate the respiration rate
by resolving all the multipath components so that the path that comes from the chest
is accurately extracted. We implement the proposed scheme using COTS Wi-Fi devices.
Our preliminary results show that a precise respiration rate estimation is possible by
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decomposing the channel. For future work, we will analyze how different factors like
distances and the rotation of the participant affect the estimation. We also plan to
explore the multi-person case.
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Figure 6.4: Analysis of the raw respiration signals. (a) is the raw CSI phase, (b) is the
raw CSI amplitude and (c) is the raw respiration of the proposed scheme.
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Figure 6.5: Respiration analysis for the normal respiration rate.
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Figure 6.6: Respiration analysis for the slow respiration rate.





7 Conclusions

Location-based services are appealing and they demand accurate and ubiquitous
positioning. Researchers, cellular networks operators and chipset vendors are making
a lot of efforts to standardize pervasive and precise localization by the latest wireless
protocols. While recent works conclude that a sub-meter level of localization accuracy is
possible, their performances drastically degrade in Non-Line-Of-Sight (NLOS) conditions
due to the poor estimation of the obstructed direct path. Therefore, this thesis aims at
improving the resolvability of multipath components to not only enable robust positioning
by accurately extracting the obstructed direct path but also improve sensing application
performances using the superior estimation of NLOS paths.

5G aims at providing outstanding localization accuracy to meet the new location-
based services. However, 5G and Long Term Evolution (LTE) will coexist until 5G
provides ubiquitous coverage. This implies that several location-based services need
to be carried out by LTE. To assess which location-based services can be carried out
by current cellular networks, we implement an LTE localization system in Chapter 3.
Our localization evaluation shows that LTE provides median error of 2 m for Line-Of-
Sight (LOS) settings while the performance degrades drastically in NLOS getting 4.76 m
of median error. This chapter concludes that 2 m of median error complies with the
positioning requirements of several location-based services but LTE would fail in fulfilling
the majority of them in NLOS settings.

The previous LTE performance is limited by the maximum available bandwidth of
20 MHz as the time resolution might not be sufficient to extract the direct path when is
obstructed. In Chapter 4, we then delve into robust indoor localization to cope well with
NLOS issues by increasing the resolvability of the multipath components. We develop
UbiLocate, an IEEE 802.11ac-based Wi-Fi location system that copes well with realistic
AP deployments and works ubiquitously, i.e., without excessive degradation under NLOS.
UbiLocate achieves one meter NLOS median error through (i) a refined Angle of Arrival
(AoA) extractor which accurately decomposes all the multipath components, (ii) a fine-
grained Time of Flight (ToF) ranging system that achieves sub-meter accuracy even in
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tough NLOS conditions and (iii) using the improved IEEE 802.11ac hardware features
of 80MHz of channel bandwidth and 4x4 Multiple-Input Multiple-Output (MIMO). Our
experimental evaluation in a number of common scenarios shows an overall improvement
of the localization performance by a factor of 2-3 compared to state-of-the-art systems,
both under LOS and NLOS conditions.

Technology is always evolving and wireless protocols provide higher data rate by
increasing channel bandwidths and the number of antennas. These improved hardware
features increase the performance of localization systems and sensing applications. In
particular, the latest Wi-Fi protocol, IEEE 802.11ax, enables a channel bandwidth of
160 MHz and a four times denser spectrum than its predecessor, IEEE 802.11ac which only
supports 80MHz of channel bandwidth. In Chapter 5, we present the first tool to collect
the most accurate Channel State Information (CSI) ever, thanks to its compatibility with
the latest generation Wi-Fi standard IEEE 802.11ax. Our tool supports CSI collection
from transmissions with up to four spatial streams and up to 160 MHz of spectral
bandwidth per stream, extracting up to 32768 subcarriers per incoming frame. To further
validate the usefulness of the platform, we carry out a preliminary evaluation to measure
the localization accuracy that IEEE 802.11ax enables. Our results, as expected, show
a superior performance of IEEE 802.11ax compared to IEEE 802.11ac. In particular,
the localization accuracy is improved by a factor of 1.75 in LOS and NLOS settings.
This implies that the reported NLOS median error of a meter level in Chapter 4 can be
improved to sub-meter level by using the hardware features of IEEE 802.11ax. We would
like to emphasize that NLOS sub-meter level of accuracy has not been possible before
without using specialized hardware.

Going beyond localization enables applications that are useful for network
management, security and health care. Hence, Chapter 6 provides insights into sensing
research by exploiting the proposed localization framework. In particular, we tackle
respiration rate estimation using Wi-Fi signals. We address this issue by resolving
the multipath components and extracting the path that comes from the human chest
relatively free of interference from static paths. This enables a much cleaner recovery of
the respiration signal than state-of-the-art works since the latter ones extract it without
any interference cancellation from static paths. Our preliminary results show an accurate
respiration rate estimation which validates that the proposed localization framework
enables accurate sensing applications.

In summary, location-based services demand pervasive and precise localization.
Recent localization systems achieve a sub-meter level of accuracy in LOS settings and
dense Access Point (AP) densities. However, the performances of these systems drastically
degrade in realistic wireless deployments. This thesis presents a localization framework to
provide accurate and ubiquitous indoor positioning in challenging scenarios. In particular,
this thesis presents a series of works that aim at increasing the resolvability of the
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multipath components by developing more accurate path decomposition algorithms and
exploiting the improved hardware features of the latest wireless protocols. Hence, the
direct path is accurately extracted which results in precise positioning. Moreover, sensing
applications also exploit position information from reflected paths as localization does
from the direct path. Hence, we extend this framework to also provide insight into
sensing research by tackling human respiration rate estimation.

7.1. Future work

Wireless protocols are evolving to provide new services in the areas of Industry
4.0, health care, security and many more. In this context, indoor localization will be
a component of a more general framework that aims at becoming sensors intelligent
by understating the environment. For instance, the incoming Wi-Fi protocol, IEEE
802.11 bf, will incorporate sensing applications [127]. In addition, wireless protocols are
integrating traditional bands, sub-6GHz bands, with Milimiter-wave (mmWave) bands in
the same device. Hence, researchers are also paying attention to maximizing the overall
performance by combining information from both bands. In particular, we identify a
number of open research directions that this thesis can contribute.

Chapter 6 provides the details of a human respiration rate estimator using Wi-Fi
signals. Its evaluation is at an early stage because we have only analyzed the single-person
case and the multi-person one is still ongoing. Our endeavors will focus on determining
how many respiration signals can be discriminated since the paths that come from the
chests are highly correlated and the respiration signals might be mixed among each other.
As a result, a single path might contain information from several signals. We will be able
to separate them by a frequency analysis if the rates are not the same.

Simultaneous Localization and Mapping (SLAM) is a potential extension of this
framework as the position of obstacles can be estimated by extracting location information
from NLOS paths while the system localizes the client. This is highly beneficial for
tracking and navigation of mobile machines since obstacles are avoided from their
trajectory. However, we need to deal with two issues:

1. Angle ambiguity: The geometry of a Uniform Linear Array (ULA) only allows
discriminating angles from -90 to 90 degrees, therefore, the system cannot know if
the signal is impinging from the front or the back of the ULA. As a result, there
are two possibles positions of the objects. This can be addressed assuming mobility
and observing the difference between the two possible positions over time. The true
position of the object remains stable while the false one changes over time since the
client is moving.

2. Second order reflections: The direct path provides location information from the
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client and first order reflections from objects in the environment. However, second
order reflections result in wrong position estimates since a system cannot determine
the point where the signal reflected the first time. But, a system can filter out
second order reflections since every time a signal bounces off, it attenuates ten dBs.
Therefore, a threshold can be used according to the power of the direct path to
remove second order reflections.

5G and Wi-Fi enable the coexistence of mmWave and sub-6GHz bands, therefore
both bands can cooperate to maximize the overall performance. For instance, it has
been extensively evaluated that mmWave can exploit AoA information from sub-6GHz
bands to reduce the overhead of mmWave beam-training. However, to the best of our
knowledge, a multiband localization system that deals with the drawbacks of both bands
has not been thoroughly investigated yet. mmWave localization is remarkably accurate if
the communication link propagates through the direct path. But if the link is misaligned,
i.e., the link propagates through an NLOS path, the mmWave location estimate points
toward a reflector and the positioning fails. This is due to the high directional links
of mmWave that steer most of the transmitted power into an NLOS path. In contrast,
sub-6GHz is not affected by this issue since it uses onmidirectional antennas, but sub-
6GHz localization is likely to be less precise than the mmWave one. Hence, a multiband
localization system can exploit the outstanding accuracy of mmWave and the robustness
of sub-6GHz. To this end, sub-6GHz positioning can be used to detect if the mmWave
estimated position is reliable that is when both bands agree on the estimated position
of the client. However, if the mmWave link is misaligned, both bands highly disagree
on the position of the client, therefore the multiband system assumes that the mmWave
localization is pointing toward a reflector. Hence, the system filters out the mmWave
localization and uses the sub-6GHz position.



References

[1] A. Blanco, N. Ludant, P. J. Mateo, Z. Shi, Y. Wang, and J. Widmer, “Performance
evaluation of single base station toa-aoa localization in an lte testbed,” in 2019
IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), 2019, pp. 1–6.

[2] A. B. Pizarro, J. P. Beltrán, M. Cominelli, F. Gringoli, and J. Widmer,
“Accurate ubiquitous localization with off-the-shelf ieee 802.11ac devices,” in
Proceedings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 241–254. [Online]. Available:
https://doi.org/10.1145/3458864.3468850

[3] F. Gringoli, M. Cominelli, A. Blanco, and J. Widmer, AX-CSI: Enabling
CSI Extraction on Commercial 802.11ax Wi-Fi Platforms. New York, NY,
USA: Association for Computing Machinery, 2022, p. 46–53. [Online]. Available:
https://doi.org/10.1145/3477086.3480833

[4] C. Andrés Ramiro, C. Fiandrino, A. Blanco Pizarro, P. Jiménez Mateo, N. Ludant,
and J. Widmer, “OpenLEON: An End-to-End Emulator from the Edge Data Center
to the Mobile User,” Proceedings of the 12th International Workshop on Wireless
Network Testbeds, Experimental Evaluation & Characterization, 2018.

[5] P. J. Mateo, A. B. Pizarro, N. Ludant, M. M. Borelli, A. García-García, A. Loch,
Z. Shi, Y. Wang, and J. Widmer, “A comprehensive study of low frequency and high
frequency channel correlation,” in 2019 International Conference on Computing,
Networking and Communications (ICNC), 2019, pp. 876–882.

[6] C. Fiandrino, A. Blanco Pizarro, P. Jiménez Mateo, C. Andrés Ramiro, N. Ludant,
and J. Widmer, “OpenLEON: An End-to-End Emulator from the Edge Data Center
to the Mobile User,” Computer Communications, 2019.

[7] X. Li, M. Ge, X. Dai, X. Ren, M. Fritsche, J. Wickert, and H. Schuh, “Accuracy
and reliability of multi-gnss real-time precise positioning: Gps, glonass, beidou,

97

https://doi.org/10.1145/3458864.3468850
https://doi.org/10.1145/3477086.3480833


98 REFERENCES

and galileo,” Journal of Geodesy, vol. 89, no. 6, pp. 607–635, Jun 2015. [Online].
Available: https://doi.org/10.1007/s00190-015-0802-8

[8] T. Roos, P. Myllymäki, H. Tirri, P. Misikangas, and J. Sievänen, “A probabilistic
approach to wlan user location estimation,” International Journal of Wireless
Information Networks, vol. 9, no. 3, pp. 155–164, Jul 2002. [Online]. Available:
https://doi.org/10.1023/A:1016003126882

[9] P. Castro, P. Chiu, T. Kremenek, and R. Muntz, “A probabilistic room location
service for wireless networked environments,” in International conference on
ubiquitous computing. Springer, 2001, pp. 18–34.

[10] P. Bahl and V. Padmanabhan, “Radar: an in-building rf-based user location and
tracking system,” in Proceedings IEEE INFOCOM 2000. Conference on Computer
Communications. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No.00CH37064), vol. 2, 2000, pp. 775–784 vol.2.

[11] M. Youssef, A. Agrawala, and A. Udaya Shankar, “Wlan location determination
via clustering and probability distributions,” in Proceedings of the First IEEE
International Conference on Pervasive Computing and Communications, 2003.
(PerCom 2003)., 2003, pp. 143–150.

[12] M. Youssef and A. Agrawala, “The horus wlan location determination system,” in
Proceedings of the 3rd international conference on Mobile systems, applications, and
services, 2005, pp. 205–218.

[13] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization systems
and technologies,” IEEE Communications Surveys Tutorials, vol. 21, no. 3, pp.
2568–2599, 2019.

[14] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi: Decimeter level localization
using wifi,” in Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, 2015, pp. 269–282.

[15] J. Xiong, K. Sundaresan, and K. Jamieson, “Tonetrack: Leveraging frequency-agile
radios for time-based indoor wireless localization,” in Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking, 2015, pp. 537–549.

[16] J. Xiong and K. Jamieson, “Towards fine-grained radio-based indoor location,” in
Proceedings of the Twelfth Workshop on Mobile Computing Systems & Applications,
2012, pp. 1–6.

[17] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan, “Indoor
localization without the pain,” in Proceedings of the sixteenth annual international
conference on Mobile computing and networking. ACM, 2010, pp. 173–184.

https://doi.org/10.1007/s00190-015-0802-8
https://doi.org/10.1023/A:1016003126882


REFERENCES 99

[18] J. Medbo, I. Siomina, A. Kangas, and J. Furuskog, “Propagation channel impact
on lte positioning accuracy: A study based on real measurements of observed time
difference of arrival,” in 2009 IEEE 20th International Symposium on Personal,
Indoor and Mobile Radio Communications, 2009, pp. 2213–2217.

[19] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Device-free human activity
recognition using commercial wifi devices,” IEEE Journal on Selected Areas in
Communications, vol. 35, no. 5, pp. 1118–1131, 2017.

[20] Y. Gu, L. Quan, and F. Ren, “Wifi-assisted human activity recognition,” in 2014
IEEE Asia Pacific Conference on Wireless and Mobile, 2014, pp. 60–65.

[21] B. Korany and Y. Mostofi, “Counting a stationary crowd using off-the-shelf
wifi,” in Proceedings of the 19th Annual International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 202–214. [Online]. Available:
https://doi.org/10.1145/3458864.3468012

[22] B. Tan, K. Chetty, and K. Jamieson, “Thrumapper: Through-wall building
tomography with a single mapping robot,” in Proceedings of the 18th International
Workshop on Mobile Computing Systems and Applications, ser. HotMobile ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p. 1–6. [Online].
Available: https://doi.org/10.1145/3032970.3032973

[23] R. Yang, X. Yang, J. Wang, M. Zhou, Z. Tian, and L. Li, “Decimeter level indoor
localization using wifi channel state information,” IEEE Sensors Journal, 2021.

[24] R. Ayyalasomayajula, A. Arun, C. Wu, S. Sharma, A. R. Sethi, D. Vasisht, and
D. Bharadia, “Deep learning based wireless localization for indoor navigation,” in
Proceedings of the 26th Annual International Conference on Mobile Computing and
Networking, 2020, pp. 1–14.

[25] M. Rea, T. E. Abrudan, D. Giustiniano, H. Claussen, and V.-M. Kolmonen,
“Smartphone positioning with radio measurements from a single wifi access point,”
in Proceedings of the 15th International Conference on Emerging Networking
Experiments And Technologies, 2019, pp. 200–206.

[26] A. Decurninge, L. G. Ordóñez, P. Ferrand, H. Gaoning, L. Bojie, Z. Wei, and
M. Guillaud, “Csi-based outdoor localization for massive mimo: Experiments
with a learning approach,” in 2018 15th International Symposium on Wireless
Communication Systems (ISWCS), 2018, pp. 1–6.

https://doi.org/10.1145/3458864.3468012
https://doi.org/10.1145/3032970.3032973


100 REFERENCES

[27] E. Y. Menta, N. Malm, R. Jäntti, K. Ruttik, M. Costa, and K. Leppänen, “On the
performance of aoa–based localization in 5g ultra–dense networks,” IEEE Access,
vol. 7, pp. 33 870–33 880, 2019.

[28] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano, C. Cano,
and D. J. Leith, “srsLTE: An open-source platform for lte evolution and
experimentation,” in Proc. of ACM WiNTECH, 2016, pp. 25–32.

[29] H. Anouar, C. Bonnet, D. Câmara, F. Filali, and R. Knopp, “An overview of
OpenAirInterface wireless network emulation methodology,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 36, no. 2, pp. 90–94, 2008.

[30] J. Xiao, Z. Zhou, Y. Yi, and L. M. Ni, “A survey on wireless indoor localization
from the device perspective,” ACM Comput. Surv., vol. 49, no. 2, jun 2016.
[Online]. Available: https://doi.org/10.1145/2933232

[31] J. P. Burg, Maximum entropy spectral analysis. Stanford University, 1975.

[32] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE
transactions on antennas and propagation, vol. 34, no. 3, pp. 276–280, 1986.

[33] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruction
perspective for source localization with sensor arrays,” IEEE transactions on signal
processing, vol. 53, no. 8, pp. 3010–3022, 2005.

[34] S. Sen, J. Lee, K.-H. Kim, and P. Congdon, “Avoiding multipath to revive inbuilding
wifi localization,” in Proceeding of the 11th annual international conference on
Mobile systems, applications, and services, 2013, pp. 249–262.

[35] P. Bahl and V. N. Padmanabhan, “Radar: An in-building rf-based user location and
tracking system,” in Proceedings IEEE INFOCOM 2000. Conference on Computer
Communications. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No. 00CH37064), vol. 2. Ieee, 2000, pp. 775–784.

[36] F. Ricciato, S. Sciancalepore, F. Gringoli, N. Facchi, and G. Boggia, “Position and
velocity estimation of a non-cooperative source from asynchronous packet arrival
time measurements,” IEEE Transactions on Mobile Computing, vol. 17, no. 9, pp.
2166–2179, 2018.

[37] M. Ibrahim, H. Liu, M. Jawahar, V. Nguyen, M. Gruteser, R. Howard, B. Yu,
and F. Bai, “Verification: Accuracy evaluation of WiFi fine time measurements on
an open platform,” in Proceedings of the 24th Annual International Conference on
Mobile Computing and Networking, 2018, pp. 417–427.

https://doi.org/10.1145/2933232


REFERENCES 101

[38] 3GPP TR 38.913 v14.3.0 "5G;Study on Scenarios and Requirements for Next
Generation Access Technologies".

[39] 3GPP TR 22.872 V2.0.0 Technical Specification Group Services and System
Aspects, "Study on positioning use cases", May 2018.

[40] V. Cisco, “Cisco visual networking index: Forecast and trends, 2017–2022,” White
Paper, 2018.

[41] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of
massive mimo: Benefits and challenges,” IEEE journal of selected topics in signal
processing, vol. 8, no. 5, pp. 742–758, 2014.

[42] J. A. del Peral-Rosado, J. A. López-Salcedo, G. Seco-Granados, F. Zanier, and
M. Crisci, “Achievable localization accuracy of the positioning reference signal of
3gpp lte,” in 2012 International Conference on Localization and GNSS, June 2012,
pp. 1–6.

[43] W. Xu, M. Huang, C. Zhu, and A. Dammann, “Maximum likelihood toa and otdoa
estimation with first arriving path detection for 3gpp lte system,” Transactions on
Emerging Telecommunications Technologies, vol. 27, no. 3, pp. 339–356, 2016.

[44] J. A. del Peral-Rosado, J. A. Lopez-Salcedo, G. Seco-Granados, F. Zaniera,
P. Crosta, R. Ioannides, and M. Crisci, “Software-defined radio lte positioning
receiver towards future hybrid localization systems,” in 31st AIAA International
Communications Satellite Systems Conference, International Communications
Satellite Systems Conferences (ICSSC), 2017, pp. 337–340.

[45] Q. Liu, R. Hu, and S. Liu, “A wireless location system in lte networks,” Mobile
Information Systems, vol. 2017, 2017.

[46] S. M. Razavi, F. Gunnarsson, H. Rydén, Å. Busin, X. Lin, X. Zhang, S. Dwivedi,
I. Siomina, and R. Shreevastav, “Positioning in cellular networks: Past, present,
future,” in 2018 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2018, pp. 1–6.

[47] D. Stojanović and N. Stojanović, “Indoor localization and tracking: Methods,
technologies and research challenges,” Facta Universitatis, Series: Automatic
Control and Robotics, vol. 13, no. 1, pp. 57–72, 2014.

[48] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and
modulation.



102 REFERENCES

[49] M. Gul, X. Ma, and S. Lee, “Timing and frequency synchronization for ofdm
downlink transmissions using zadoff-chu sequences,” IEEE Transactions on Wireless
Communications, vol. 14, no. 3, pp. 1716–1729, 2015.

[50] J. A. del Peral-Rosado, R. Raulefs, J. A. López-Salcedo, and G. Seco-Granados,
“Survey of cellular mobile radio localization methods: from 1g to 5g,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1124–1148, 2017.

[51] H. Krim and M. Viberg, “Two decades of array signal processing research: the
parametric approach,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67–94,
1996.

[52] X. Zhang, L. Xu, L. Xu, and D. Xu, “Direction of departure (dod) and direction
of arrival (doa) estimation in mimo radar with reduced-dimension music,” IEEE
communications letters, vol. 14, no. 12, pp. 1161–1163, 2010.

[53] E. Blossom, “Gnu radio: tools for exploring the radio frequency spectrum,” Linux
journal, vol. 2004, no. 122, p. 4, 2004.

[54] R. Roy and T. Kailath, “Esprit-estimation of signal parameters via rotational
invariance techniques,” IEEE Transactions on acoustics, speech, and signal
processing, vol. 37, no. 7, pp. 984–995, 1989.

[55] X. Li, S. Li, D. Zhang, J. Xiong, Y. Wang, and H. Mei, “Dynamic-music: accurate
device-free indoor localization,” in Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, 2016, pp. 196–207.

[56] F. Adib and D. Katabi, “See through walls with wifi!” in Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM, 2013, pp. 75–86.

[57] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from limited data
using focuss: A re-weighted minimum norm algorithm,” IEEE Transactions on
signal processing, vol. 45, no. 3, pp. 600–616, 1997.

[58] J. Yin and T. Chen, “Direction-of-arrival estimation using a sparse representation
of array covariance vectors,” IEEE Transactions on Signal Processing, vol. 59, no. 9,
pp. 4489–4493, 2011.

[59] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence
properties of the nelder–mead simplex method in low dimensions,” SIAM Journal
on optimization, vol. 9, no. 1, pp. 112–147, 1998.

[60] M. Ibrahim, A. Rostami, B. Yu, H. Liu, M. Jawahar, V. Nguyen, M. Gruteser,
F. Bai, and R. Howard, “Wi-go: accurate and scalable vehicle positioning using wifi



REFERENCES 103

fine timing measurement,” in Proceedings of the 18th International Conference on
Mobile Systems, Applications, and Services, 2020, pp. 312–324.

[61] K. Jiokeng, G. Jakllari, A. Tchana, and A.-L. Beylot, “When FTM Discovered
MUSIC: Accurate WiFi-based Ranging in the Presence of Multipath,” in IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 2020,
pp. 1857–1866.

[62] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering
802.11 n traces with channel state information,” ACM SIGCOMM Computer
Communication Review, pp. 53–53, 2011.

[63] alejandroBlancoPizarro, “Ubilocate,” https://github.com/IMDEANetworksWNG/
UbiLocate, 2021.

[64] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The
Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.

[65] S. Sen, N. Santhapuri, R. R. Choudhury, and S. Nelakuditi, “Successive interference
cancellation: A back-of-the-envelope perspective,” in Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[66] D. Halperin, T. Anderson, and D. Wetherall, “Taking the sting out of carrier
sense: interference cancellation for wireless lans,” in Proceedings of the 14th ACM
international conference on Mobile computing and networking, 2008, pp. 339–350.

[67] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I. Pedersen,
“Channel parameter estimation in mobile radio environments using the sage
algorithm,” IEEE Journal on selected areas in communications, vol. 17, no. 3, pp.
434–450, 1999.

[68] Y. Xie, J. Xiong, M. Li, and K. Jamieson, “md-track: Leveraging multi-
dimensionality for passive indoor wi-fi tracking,” in The 25th Annual International
Conference on Mobile Computing and Networking, 2019, pp. 1–16.

[69] T. S. Rappaport et al., Wireless communications: principles and practice. prentice
hall PTR New Jersey, 1996, vol. 2.

[70] F. Gringoli, M. Schulz, J. Link, and M. Hollick, “Free your CSI: A channel
state information extraction platform for modern Wi-Fi chipsets,” in Proceedings
of the 13th International Workshop on Wireless Network Testbeds, Experimental
Evaluation & Characterization, 2019, pp. 21–28.

[71] “NexMon Project,” https://github.com/seemoo-lab/nexmon/.

https://github.com/IMDEANetworksWNG/UbiLocate
https://github.com/IMDEANetworksWNG/UbiLocate
https://github.com/seemoo-lab/nexmon/


104 REFERENCES

[72] J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang,
B. D. Anderson, and P. N. Belhumeur, “A theory of network localization,” IEEE
Transactions on Mobile Computing, vol. 5, no. 12, pp. 1663–1678, 2006.

[73] T.-J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-of-arrival
estimation of coherent signals,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 33, no. 4, pp. 806–811, 1985.

[74] S. U. Pillai and B. H. Kwon, “Forward/backward spatial smoothing techniques for
coherent signal identification,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, no. 1, pp. 8–15, 1989.

[75] R. T. Williams, S. Prasad, A. K. Mahalanabis, and L. H. Sibul, “An improved
spatial smoothing technique for bearing estimation in a multipath environment,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 4, pp.
425–432, 1988.

[76] P. Kumar, L. Reddy, and S. Varma, “Distance measurement and error estimation
scheme for rssi based localization in wireless sensor networks,” in 2009 Fifth
international conference on wireless communication and sensor networks (WCSN).
IEEE, 2009, pp. 1–4.

[77] İ. Güvenc, “Enhancements to rss based indoor tracking systems using kalman
filters,” Ph.D. dissertation, University of New Mexico, 2003.

[78] A. Goswami, L. E. Ortiz, and S. R. Das, “Wigem: A learning-based approach
for indoor localization,” in Proceedings of the Seventh COnference on emerging
Networking EXperiments and Technologies, 2011, pp. 1–12.

[79] G. V. Zàruba, M. Huber, F. Kamangar, and I. Chlamtac, “Indoor location tracking
using rssi readings from a single wi-fi access point,” Wireless networks, vol. 13, no. 2,
pp. 221–235, 2007.

[80] D. Giustiniano and S. Mangold, “Caesar: carrier sense-based ranging in off-the-
shelf 802.11 wireless lan,” in Proceedings of the Seventh COnference on emerging
Networking EXperiments and Technologies, 2011, pp. 1–12.

[81] M. Youssef, A. Youssef, C. Rieger, U. Shankar, and A. Agrawala, “Pinpoint: An
asynchronous time-based location determination system,” in Proceedings of the 4th
international conference on Mobile systems, applications and services, 2006, pp.
165–176.

[82] M. Ciurana, F. Barcelo-Arroyo, and F. Izquierdo, “A ranging system with ieee
802.11 data frames,” in 2007 IEEE Radio and Wireless Symposium. IEEE, 2007,
pp. 133–136.



REFERENCES 105

[83] M. Rea, A. Fakhreddine, D. Giustiniano, and V. Lenders, “Filtering noisy 802.11
time-of-flight ranging measurements from commoditized wifi radios,” IEEE/ACM
Transactions on Networking, vol. 25, no. 4, pp. 2514–2527, 2017.

[84] A. T. Mariakakis, S. Sen, J. Lee, and K.-H. Kim, “Sail: Single access point-based
indoor localization,” in Proceedings of the 12th annual international conference on
Mobile systems, applications, and services. ACM, 2014, pp. 315–328.

[85] H. Krim and M. Viberg, “Two decades of array signal processing research: the
parametric approach,” IEEE signal processing magazine, vol. 13, no. 4, pp. 67–94,
1996.

[86] J. Xiong and K. Jamieson, “Arraytrack: a fine-grained indoor location system.”
Usenix, 2013.

[87] E. Soltanaghaei, A. Kalyanaraman, and K. Whitehouse, “Multipath triangulation:
Decimeter-level wifi localization and orientation with a single unaided receiver,”
in Proceedings of the 16th annual international conference on mobile systems,
applications, and services, 2018, pp. 376–388.

[88] I. Guvenc, C.-C. Chong, and F. Watanabe, “Nlos identification and mitigation for
uwb localization systems,” in 2007 IEEE Wireless Communications and Networking
Conference. IEEE, 2007, pp. 1571–1576.

[89] P. Pannuto, B. Kempke, L.-X. Chuo, D. Blaauw, and P. Dutta, “Harmonium: Ultra
wideband pulse generation with bandstitched recovery for fast, accurate, and robust
indoor localization,” ACM Transactions on Sensor Networks (TOSN), vol. 14, no. 2,
pp. 1–29, 2018.

[90] F. Adib, Z. Kabelac, and D. Katabi, “Multi-person localization via RF body
reflections,” in 12th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 15), 2015, pp. 279–292.

[91] A. R. J. Ruiz and F. S. Granja, “Comparing ubisense, bespoon, and decawave
uwb location systems: Indoor performance analysis,” IEEE Transactions on
instrumentation and Measurement, vol. 66, no. 8, pp. 2106–2117, 2017.

[92] M. Yang, L.-X. Chuo, K. Suri, L. Liu, H. Zheng, and H.-S. Kim, “ilps: Local
positioning system with simultaneous localization and wireless communication,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications. IEEE,
2019, pp. 379–387.

[93] L.-X. Chuo, Z. Luo, D. Sylvester, D. Blaauw, and H.-S. Kim, “Rf-echo: A non-line-
of-sight indoor localization system using a low-power active rf reflector asic tag,” in



106 REFERENCES

Proceedings of the 23rd Annual International Conference on Mobile Computing and
Networking, 2017, pp. 222–234.

[94] T. Ma, Y. Xiao, X. Lei, W. Xiong, and Y. Ding, “Indoor localization with
reconfigurable intelligent surface,” IEEE Communications Letters, 2020.

[95] C. Huang, G. C. Alexandropoulos, C. Yuen, and M. Debbah, “Indoor signal focusing
with deep learning designed reconfigurable intelligent surfaces,” in 2019 IEEE 20th
International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC). IEEE, 2019, pp. 1–5.

[96] T. Sathyan, D. Humphrey, and M. Hedley, “Wasp: A system and algorithms
for accurate radio localization using low-cost hardware,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 41, no. 2,
pp. 211–222, 2010.

[97] J. Xianjun, L. Wei, and M. Michael, “open-source ieee802.11/wi-fi baseband
chip/fpga design,” 2019. [Online]. Available: https://github.com/open-sdr/openwifi

[98] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “An ieee 802.11 a/g/p ofdm
receiver for gnu radio,” in Proceedings of the second workshop on Software radio
implementation forum, 2013, pp. 9–16.

[99] Y. Ma, G. Zhou, and S. Wang, “Wifi sensing with channel state information: A
survey,” ACM Computing Surveys, vol. 52, no. 3, pp. 1–36, Jun. 2019. [Online].
Available: http://doi.acm.org/10.1145/3310194

[100] F. Gringoli, M. Schulz, J. Link, and M. Hollick, “Free your csi: A channel
state information extraction platform for modern wi-fi chipsets,” in 13th
International Workshop on Wireless Network Testbeds, Experimental Evaluation
& Characterization, ser. WiNTECH ’19, 2019, p. 21–28. [Online]. Available:
https://doi.org/10.1145/3349623.3355477

[101] J. O. Lacruz, D. Garcia, P. J. Mateo, J. Palacios, and J. Widmer, “mm-FLEX:
An Open Platform for Millimeter-Wave Mobile Full-Bandwidth Experimentation,”
Proceedings of the 18th International Conference on Mobile Systems, Applications,
and Services, 2020.

[102] C. Wu, F. Zhang, B. Wang, and K. J. Ray Liu, “mmTrack: Passive Multi-Person
Localization Using Commodity Millimeter Wave Radio,” IEEE INFOCOM 2020 -
IEEE Conference on Computer Communications, 2020.

[103] J. Palacios, P. Casari, and J. Widmer, “JADE: Zero-knowledge device localization
and environment mapping for millimeter wave systems,” IEEE INFOCOM 2017 -
IEEE Conference on Computer Communications, 2017.

https://github.com/open-sdr/openwifi
http://doi.acm.org/10.1145/3310194
https://doi.org/10.1145/3349623.3355477


REFERENCES 107

[104] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering 802.11n
traces with channel state information,” SIGCOMM Computer Communication
Review, vol. 41, no. 1, p. 53, Jan. 2011. [Online]. Available: https:
//doi.org/10.1145/1925861.1925870

[105] A. Zubow, P. Gawłowicz, and F. Dressler, “On phase offsets of 802.11 ac commodity
wifi,” in 2021 16th Annual Conference on Wireless On-demand Network Systems
and Services Conference (WONS ’21), 2021, pp. 1–4.

[106] Y. Xie, Z. Li, and M. Li, “Precise power delay profiling with commodity
wifi,” in 21st Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’15, 2015, p. 53–64. [Online]. Available: https:
//doi.org/10.1145/2789168.2790124

[107] M. N. Mahfoudi, “Unlocking wireless sensing potential in wi-fi and iot
networks,” Theses, Université Côte d’Azur, Oct. 2019. [Online]. Available:
https://hal.archives-ouvertes.fr/tel-02431424

[108] R. Ayyalasomayajula, A. Arun, C. Wu, S. Rajagopalan, S. Ganesaraman,
A. Seetharaman, I. K. Jain, and D. Bharadia, “Locap: Autonomous
millimeter accurate mapping of wifi infrastructure,” in 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), Feb. 2020,
pp. 1115–1129. [Online]. Available: https://www.usenix.org/conference/nsdi20/
presentation/ayyalasomayajula

[109] R. University, “Warp: Wireless open access research platform,” 2020. [Online].
Available: https://warpproject.org/

[110] E. Research, “The universal software radio peripheral usrp software defined radio
device,” 2021. [Online]. Available: https://www.ettus.com/

[111] X. Jiao, W. Liu, M. Mehari, M. Aslam, and I. Moerman, “openwifi: a free and
open-source ieee802.11 sdr implementation on soc,” in 2020 IEEE 91st Vehicular
Technology Conference (VTC2020-Spring), 2020, pp. 1–2.

[112] S. Li, X. Li, K. Niu, H. Wang, Y. Zhang, and D. Zhang, “Ar-alarm: An adaptive and
robust intrusion detection system leveraging csi from commodity wi-fi,” in Enhanced
Quality of Life and Smart Living, M. Mokhtari, B. Abdulrazak, and H. Aloulou,
Eds. Cham: Springer International Publishing, 2017, pp. 211–223.

[113] J. Lv, D. Man, W. Yang, X. Du, and M. Yu, “Robust wlan-based indoor intrusion
detection using phy layer information,” IEEE Access, vol. 6, pp. 30 117–30 127, 2018.

https://doi.org/10.1145/1925861.1925870
https://doi.org/10.1145/1925861.1925870
https://doi.org/10.1145/2789168.2790124
https://doi.org/10.1145/2789168.2790124
https://hal.archives-ouvertes.fr/tel-02431424
https://www.usenix.org/conference/nsdi20/presentation/ayyalasomayajula
https://www.usenix.org/conference/nsdi20/presentation/ayyalasomayajula
https://warpproject.org/
https://www.ettus.com/


108 REFERENCES

[114] D. Zhu, N. Pang, G. Li, and S. Liu, “Notifi: A ubiquitous wifi-based abnormal
activity detection system,” in 2017 International Joint Conference on Neural
Networks (IJCNN), 2017, pp. 1766–1773.

[115] Y. Wang, K. Wu, and L. M. Ni, “Wifall: Device-free fall detection by wireless
networks,” IEEE Transactions on Mobile Computing, vol. 16, no. 2, pp. 581–594,
2017.

[116] S. Palipana, D. Rojas, P. Agrawal, and D. Pesch, “Falldefi: Ubiquitous
fall detection using commodity wi-fi devices,” Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol., vol. 1, no. 4, jan 2018. [Online]. Available:
https://doi.org/10.1145/3161183

[117] S. Arshad, C. Feng, Y. Liu, Y. Hu, R. Yu, S. Zhou, and H. Li, “Wi-chase: A wifi
based human activity recognition system for sensorless environments,” in 2017 IEEE
18th International Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2017, pp. 1–6.

[118] H. Abdelnasser, K. A. Harras, and M. Youssef, “Ubibreathe: A ubiquitous
non-invasive wifi-based breathing estimator,” in Proceedings of the 16th ACM
International Symposium on Mobile Ad Hoc Networking and Computing, ser.
MobiHoc ’15. New York, NY, USA: Association for Computing Machinery, 2015,
p. 277–286. [Online]. Available: https://doi.org/10.1145/2746285.2755969

[119] B. Fang, N. D. Lane, M. Zhang, A. Boran, and F. Kawsar, “Bodyscan: Enabling
radio-based sensing on wearable devices for contactless activity and vital sign
monitoring,” in Proceedings of the 14th Annual International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 97–110. [Online]. Available:
https://doi.org/10.1145/2906388.2906411

[120] J. Liu, Y. Wang, Y. Chen, J. Yang, X. Chen, and J. Cheng, “Tracking
vital signs during sleep leveraging off-the-shelf wifi,” ser. MobiHoc ’15. New
York, NY, USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2746285.2746303

[121] X. Liu, J. Cao, S. Tang, and J. Wen, “Wi-sleep: Contactless sleep monitoring via
wifi signals,” in 2014 IEEE Real-Time Systems Symposium, 2014, pp. 346–355.

[122] X. Liu, J. Cao, S. Tang, J. Wen, and P. Guo, “Contactless respiration monitoring
via off-the-shelf wifi devices,” IEEE Transactions on Mobile Computing, vol. 15,
no. 10, pp. 2466–2479, 2016.

https://doi.org/10.1145/3161183
https://doi.org/10.1145/2746285.2755969
https://doi.org/10.1145/2906388.2906411
https://doi.org/10.1145/2746285.2746303


REFERENCES 109

[123] P. Wang, B. Guo, T. Xin, Z. Wang, and Z. Yu, “Tinysense: Multi-user respiration
detection using wi-fi csi signals,” in 2017 IEEE 19th International Conference on
e-Health Networking, Applications and Services (Healthcom), 2017, pp. 1–6.

[124] H. Wang, D. Zhang, J. Ma, Y. Wang, Y. Wang, D. Wu, T. Gu, and
B. Xie, “Human respiration detection with commodity wifi devices: Do user
location and body orientation matter?” ser. UbiComp ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 25–36. [Online]. Available:
https://doi.org/10.1145/2971648.2971744

[125] Y. Zeng, D. Wu, J. Xiong, J. Liu, Z. Liu, and D. Zhang, “Multisense: Enabling
multi-person respiration sensing with commodity wifi,” Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol., vol. 4, no. 3, sep 2020. [Online]. Available:
https://doi.org/10.1145/3411816

[126] S. Shi, Y. Xie, M. Li, A. X. Liu, and J. Zhao, “Synthesizing wider wifi bandwidth for
respiration rate monitoring in dynamic environments,” in IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications, 2019, pp. 181–189.

[127] F. Restuccia, “Ieee 802.11 bf: Toward ubiquitous wi-fi sensing,” arXiv preprint
arXiv:2103.14918, 2021.

https://doi.org/10.1145/2971648.2971744
https://doi.org/10.1145/3411816



	Acknowledgements
	Published Content
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Introduction
	Motivation
	Challenges and the main goal of the thesis
	Contributions of the thesis
	Outline of the thesis

	Background on wireless localization
	Location techniques
	Triangulation
	Trilateration
	Hybrid (AoA + distance)

	Wireless model
	Path parameters
	Overview of the estimation of path parameters


	Performance Evaluation of Single Base Station ToA-AoA Localization in an LTE Testbed
	Introduction
	LTE background
	LTE Synchronization
	LTE Reference Signals
	Localization in LTE

	Localization Process Description
	AoA Estimation
	ToA estimation

	Implementation
	Numerical Results
	AoA
	ToA
	Localization
	Further observations

	Conclusion

	Accurate Ubiquitous Localization with Off-the-Shelf IEEE802.11ac Devices
	Introduction
	UbiLocate overview
	Angle estimation
	Ranging
	Localization

	Implementation
	Extracting accurate CSI
	Extracting timestamps
	Implementation of the FTM procedure

	Experimental Evaluation
	Testbed setups
	Comparison with other systems
	High density scenario
	Medium density scenario
	Low density scenario
	Additional Considerations

	Related Work
	Conclusions

	AX-CSI: Enabling CSI extraction on commercial 802.11ax Wi-Fi platforms
	Introduction
	The AX-tended CSI extractor
	CSI data layout
	Testing the CSI extraction platform beyond 80 MHz with SDRs

	CSI Extraction Performance
	Results with HE PHY
	IEEE 802.11ax localization performance
	Related work
	Conclusions

	Respiration Rate Estimation using Commodity Wi-Fi
	Introduction
	Passive localization
	Breathing detection
	Path parameter estimation
	Breathing signal extraction and rate estimation
	CSI cleaning

	Respiration evaluation
	Conclusions

	Conclusions
	Future work

	References

