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ABSTRACT
To support next generation services, 5G mobile network
architectures are increasingly adopting emerging technlo-
gies like software-defined networking (SDN) and network
function virtualization (NFV). Core and radio access func-
tionalities are virtualized and executed in edge data centers,
in accordance with the Multi-Access Edge Computing (MEC)
principle. While testbeds are an essential research tool for ex-
perimental evaluation in such environments, the landscape
of data center and mobile network testbeds is fragmented. In
this work, we aim at filling this gap by presenting openLEON,
an open source muLti-access Edge cOmputiNg end-to-end
emulator that operates from the edge data center to the mo-
bile users. openLEON bridges the functionalities of existing
emulators for data centers and mobile networks, i.e., Mininet
and srsLTE, and makes it possible to evaluate and validate re-
search ideas on all the components of an end-to-end mobile
edge architecture.

CCS CONCEPTS
• Networks → Network architectures; Data center net-
works; Mobile networks;
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1 INTRODUCTION
The concept of Multi-Access Edge Computing (MEC), for-
merly known as Mobile Edge Computing, was standardized
by the European Telecommunications Standards Institute
(ETSI) and is one of the key enablers for fifth-generation (5G)
mobile networks [4]. The MEC paradigm aims at providing
computing service closer to the end user by bringing appli-
cations and services at close distance to the end-user. MEC
is applicable in scenarios where locality and low-latency re-
quirements are essential [5]. As its definition suggests, MEC
is not tied to a single radio technology, but embraces both
cellular and other radio access technologies such as WiFi. It
is also agnostic to the evolution of the mobile network itself
and can be deployed in LTE, 4G or 5G networks. For these rea-
son, it is crucial for mobile network operators to understand
the impact of MEC on overall mobile system performance in
existing networks and to plan network upgrades.
The “edge” is a data center or nano data center deployed

close to the base stations inside an operator-owned infras-
tructure, typically called MEC host, that provides computing
functionalities and can aggregate virtualized core and radio
network functions of the mobile network. Hence, both the
Evolved Packet Core (EPC) and Radio Access Network (RAN),
in the form of a Cloud-RAN, can run in the same data center
in a virtualized manner. MEC exploits emerging technolo-
gies such as software-defined networking (SDN) [11] and
network function virtualization (NFV) [17]. While testbeds
are essential for research, experimental evaluation and pro-
totype development, the existing landscape of emulators and
testbeds does not offer much in the context of MEC as the
available ones either target mobile or data center networks
separately.
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In this work, we aim at filling this gap by presenting
openLEON, a muLti-access Edge cOmputiNg end-to-end em-
ulator which spans from the edge data center to the mo-
bile users. openLEON bridges the functionalities of existing
emulators, namely srsLTE [6] for the mobile network and
Mininet [14] to emulate a SDN-based data center network.
The objective of openLEON is to enable research experi-
ments in the MEC domain, providing emulation of both data
center and mobile network components. While some prior
work in this area exists (e.g., [2]), it onlys supports mobile
network emulation and does not include the data center envi-
ronment. With Mininet, it is possible to connect virtual data
center hosts and switches through virtual Ethernet links,
while packets are processed using the real Linux protocol
stack. Furthermore, hosts have access to all kernel functions.
To validate openLEON, we implement and assess several
use cases, such as the caching proof-of-concept of [2] and
impact of Radio Link Control (RLC) buffer size [13]. Note
that we intentionally leave out from the openLEON imple-
mentation some typical cloud computing aspects such as the
tuning of virtual machine allocation policies or measuring
energy consumption that are provided by simulators like
CloudSimSDN [21].
The rest of the paper is organized as follows. Section 2

illustrates the rationale for the choice of srsLTE and Mininet
as basis for openLEON and provides an overview of exist-
ing emulators in the two domains. Section 3 illustrates the
openLEON platform and Section 4 provides an evaluation
of the use cases. Section 5 outlines further open research
challenges where openLEON can be applied and Section 6
overviews related works in the area. Finally, Section 7 con-
cludes the work and provides final remarks.

2 BACKGROUND AND MOTIVATION
The objective of this section is to answer the question of
whether the combination of srsLTE and Mininet is the right
set of tools to develop such a end-to-end emulator.

2.1 Emulation of Mobile Networks/LTE
Emulators duplicate both hardware and software aspects of
a real-world testbed, hence providing a significant advantage
over simulators that abstract from the hardware behavior
and are bounded by the correctness of the simulation model.
In the context of LTE networks, emulators can capture real-
world channel conditions through parameters like path loss,
multipath fading, delay spread, Doppler spread, and other
spatial parameters.

srsLTE [6] and OpenAirInterface (OAI) [19] are fully oper-
ational open source software implementations of LTE cellular
systems. Both platforms enable the emulation on standard

Linux-equipment of the main components of an LTE net-
work, such as the user equipment (UE) and base station (eN-
odeB/eNB) in the Radio Access Network (RAN), and the Mo-
bility Management Entity (MME), Home Subscriber Server
(HSS), Serving and Packet Gateways (SGw and PGw) in the
Evolved Packet Core (EPC). The main difference among the
two platforms is the supported specifications. OAI imple-
ments the 3rd Generation Partnership Project (3GPP) Re-
leases 9 and 10, whereas srsLTE is more limited and only
implements 3GPP Release 8.

Previous research has compared the relative performance
between srsLTE and OAI, highlighting the higher compu-
tational efficiency of the latter [7]. At the same time, the
modularity of the former makes it easier for developers to
customize and extend the code. In addition, other metrics
should be considered, such as the stability of the connection
between core, eNB and UE. We have tested both platforms
extensively to assess such metric and the achievable data
rates for different channel bandwidth options. A desktop
computer with 8 cores at 3.4 GHz and 16 GB RAM was used
to run the eNodeB implementation with a NI USRP-2942R as
LTE base station. In addition, the EPC application is executed
in a virtual machine hosted in the same desktop computer.
For the user equipment, we use a Motorola Moto G5 Plus
with a custom SIM card (the SIM card features factory-default
unique IMSI and a card-individual random subscriber authen-
tication key (K) and operator code (OPC) manually registered
in the HSS) to have full access to the emulated LTE network
environment.
Table 1 compares the results. While srsLTE achieves a

connection stability of more than 1 hour for 5 and 10MHz
channel bandwidth, OAI stability is lower, even dropping
to less than 5 minutes of connectivity at 20 MHz. For this
reason, we opted for srsLTE as mobile network emulator in
openLEON.

2.2 Emulating SDN Data Center Networks
To emulate data center networks, the most widely adopted
solution is Mininet [14]. Mininet is a flexible experimental
platform that allows to easily configure SDN-based network
topologies comprising virtual hosts, switches and intercon-
necting links. Mininet creates separated network contexts
(the so-called network namespace mechanism) for the pro-
cesses running together on a single OS kernel with process-
based virtualization. The key features of Mininet are the
capability of virtual hosts to run Unix/Linux-based applica-
tions and the use of the actual Linux network stack to process
packets. The main, well-known disadvantage of Mininet is
its poor scalability on standard servers. When emulating
large testbeds with thousands of virtual switches and high
traffic load, the computational complexity of the experiment

2



Table 1: Performance Analysis of srsLTE [6] and OAI [19]

Freqency [MHz] Speed Test [Mbps] Connection Stability [min]
srsLTE OAI srsLTE OAI

5 DL:15 - UL:9 DL:10 - UL:8 > 60 > 60
10 DL:22 - UL:13 DL:25 - UL:18 > 60 ≤ 60
20 DL:23 - UL:22 DL:45 - UL:35 ≤ 60 ≤ 5

is overwhelming. Since virtual hosts, switches and applica-
tions share the CPU cycles, such scenarios prevent the CPU
scheduler of the Linux kernel to precisely control the order
of operations. Several solutions help to overcome such short-
comings. MaxiNet [22] spans the computational effort over
multiple physical machines, achieving precise emulation of
large-scale topologies with thousands of nodes. Virtual-Time
Mininet [24] resorts on the time-dilatation technique, i.e.,
the emulated time slows down with respect to real time by
a given factor (time-dilatation factor). For example, with a
time-dilatation factor equal to 10, every 10 s of real-time
corresponds to 1 s of emulated time.
Given that edge data centers are much smaller than con-

ventional clouds, we useMininet 2.3.0, an evolution ofMininet
High Fidelity (HiFi - 2.1.0), for the prototype implementa-
tion of openLEON. Among its advantages is that it allows to
perform live migration of a virtual machine [10].

3 THE OPENLEON PLATFORM
This section presents the design of openLEON and themethod-
ology to interconnect srsLTE and Mininet.

3.1 Requirements
The design of openLEON satisfies the following require-
ments:

• Maintain high fidelity in the respective environments,
i.e., to incorporate network topologies that faithfully
reproduce in smaller scale those of data center net-
works and the current LTE stack to guarantee correct
handling of the mobile traffic.

• At the same time, the programming environment should
not restrict the users to explore and research alter-
native solutions, i.e., the platform should be flexible
enough to allow to easily emulate other data center
network topologies and to extend the functionalities
of the mobile network.

In order to meet these design requirements, openLEON has
to overcome a number of challenges that are explained in
the next section.

3.2 The Methodology for Interconnection
In conventional EPC, specific interfaces interconnect the
components, namely S1: S/PGw ↔ eNB, S11: SGw ↔MME,

eNodeB
App

S/P-GW

MiniNet Hosts

HSS

MME

USRP

Figure 1: The openLEON testbed

and S6: HSS↔ MME. To build openLEON, we seek a solu-
tion that allows to execute the functionalities of such com-
ponents within a nano-data center topology. This translates
into executing the corresponding scripts run_spgw, run_hss
and run_mme from Mininet hosts, which is possible given the
capability of the hosts to run applications through xterm ter-
minals. For the sake of simplicity, we resort to execute all the
scripts in one host (see Fig. 1), thus not making explicit the
aforementioned S1, S6 and S11 interfaces. Note that no tech-
nical restrictions forbid to execute the three functionalities
on different hosts (with the caveat of granting the appropri-
ate permissions to access the HSS database, developed with
MySQL).
The overall architecture of openLEON is shown in Fig. 2.

The eNB application is executed on the physical machine,
which also hosts a virtual machine running Mininet and
the EPC functionalities. We set a 10.0.0.0/12 network for
Mininet and a 172.16.0.0/24 network to interconnect the
physical machine with the USRP through PCI Express. For
the development of openLEON, we use a NI USRP-2942R
(with updated PCI Express driver). Such a solution offers the
same sample rate (200MS/s with 16-bit I/Q) as a 10 Gigabit
Ethernet connection, with the advantage that no manual
IP and MTU size configuration is required from user side.
One Mininet host performs NAT functions, bridging the vir-
tual machine interfaces with the physical machine. We use
a 10.16.0.0/12 network for the GPRS Tunneling Protocol
(GTP) that provides user-plane connectivity between the
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10.0.0.1 - 10.16.0.1

· · ·Hosts
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Aggregation

Core
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VM with MiniNet and EPC - 10.0.0.0/12

eNB

172.16.0.100

10.16.0.2

UE
10.16.0.3

Internet

GTP

Figure 2: The architectural components - block diagram

S/PGw and the eNB. Given the multi-level virtualized envi-
ronment and the presence of the GTP tunnel, it is important
to properly set up the routing.

openLEON makes the following changes to the routing
tables to enable end-to-end connectivity:

• Configuration of the gtp_bind_addr of the eNB set-
ting (enb.conf) to be in the 172.16.0.0/24 network,
e.g., 172.16.0.104.

• In the physical machine, two entries are included to
route traffic from the data center and from the mobile
users through the VM IP;

• The traffic generated by the UE and destined to the
edge data center is routed via the eNB;

• Traffic generated by Mininet hosts and destined to the
mobile users is routed through the EPC host.

We tested the routing configuration using pings, for both
smartphones equipped with custom SIM cards and laptops
with Nuand BladeRF x40 Software Defined Radios (SDRs) as
the end devices. BladeRFs are inexpensive SDRs enabling the
setup of a LTE compliant pico cell or UE, offering up to 30
MHz I/Q sampling rate which is sufficient to decode the 20
MHz LTE channel. For the case of BladeRF UEs, bidirectional
connectivity is established directly, while for smartphones
root privileges are necessary, since commercially available
smartphones do not reply to pings.

Finally, we tested the connection stability. Whenever the
USRP UHD driver faces problems in sending or receiving
samples, it issues late packet messages to inform the user
about the internal clock desynchronization that disrupts the
connectivity and brings down the network interfaces. As
a consequence, the route from the eNB to the EPC host is
lost. To overcome this problem, we periodically check the
configuration with traceroute and if necessary re-establish
connectivity.

3.3 The Data Center Topology
Currently, the vast majority of data centers implement a
3-Tier architecture, which is based on a classical 5-stage
Clos network and consists of three levels of switches, Top
of Rack (ToR), aggregation and core [20]. As default data
center topology, openLEON implements in Mininet a 3-Tier
architecture with 2 core switches, 2 aggregation switch per-
core switch and a total of 64 hosts arranged into 8 racks
(where a rack comprises the servers and ToR switches within
one physical cabinet). In addition, we create an additional
host with NAT functionalities interconnected with the core
switches.
In Mininet, the reference SDN controller (ovs-controller

from Mininet 2.0.0) does not implement the spanning-tree
protocol by default. Since data center topologies have inher-
ent loops, we instead use a RYU controller. RYU is a Python
module that supports OpenFlow protocol and provides an
API that facilitates network management and control.

4 USE CASE EVALUATION
4.1 Testbed Configuration
For the experiments, we configured openLEON as follows.
The srseNB application from srsLTE version 18.3.1 runs
over a desktop computer equipped with 8 cores running
at 3.4 GHz, 16 GB RAM and Linux Ubuntu 14.04.5. The LTE
station consists of a NI USRP-2942R connected with PCI Ex-
press with the desktop computer. As UEs, we use two laptops,
one with 4 cores at 2.6 GHz and 16 GB of RAM, and another
with 4 cores at 2.1 GHz and 8 GB of RAM. Those are con-
nected to Nuand BladeRF x40 SDRs. For the virtual machine
running the EPC application and Mininet (on Ubuntu with
kernel version 4.13.0) we reserved 1 core, 6 GB of RAM, and
50 GiB of space. Unless otherwise stated, the data center
network is the one described in § 3.3.
4.2 Experiments
Caching. ETSI has defined six relevant use cases for MEC:
video analytics, location services, Internet-of-Things (IoT),
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augmented reality, optimized local content distribution, and
data caching. The latter use case enables faster response
and alleviates congestion in the core. Previous work with
OAI platform highlighted the benefit of local caching at the
eNB or at the MEC host compared to non-local caching [2].
However, the case with packet caching at MEC hosts does
not take into account the characteristics of a data center
topology. In this experiment, we fill this gap and analyze the
RTT achieved with different options for content placement,
namely local caching at the edge data center in a randomly
selected host in the same and different rack of the host with
EPC functionalities. We conduct experiments by generating
traffic with the ping utility, and compare the performance
of local caching versus non-local caching, where the UE
connects to the Global Amazon AWS service based in Seattle.
For the experiment, a total of 120 echo requests over 120
seconds are transmitted, with the packet size set to 64, 768,
2048, 4096, and 8192 bytes. The UE is placed at 2 m in line of
sight of the USRP to ensure a stable channel quality. The hosts
in the data center generate UDP background traffic with
200 Mbps of target bandwidth with the iperf tool according
to a pre-configured permutation matrix (each host generates
iperf traffic towards another random host).
Fig. 3 shows the results in form of a box-plot (left axis)

and depicts the fraction of timed-out packets (right axis), i.e.,
the packets for which the ping utility has waited a reply for
a certain amount of time (twice the length of the maximum
RTT by default). First, we observe that as expected the higher
number of outliers (depicted with crosses) and timed-out
packets occur for non-local caching tests. Although latency-
sensitive applications can considerably benefit from RTTs
with low-variability, the ping utility can not measure jitter
accurately as the echo replies depend on the OS scheduler
of the end host, which introduces jitter itself. Second, for
a small packet size (64-768 bytes), the advantage of local
caching is significant. For intermediate packet sizes (2048-
4096 bytes), the statistical difference in RTTs is negligible
while for large packet size (8192 bytes) local caching does not
bring any benefit apparently. However, this is not true, as the
fraction of timed-out packets for non-local caching exceeds
70% while it is null for both local caching cases. Interestingly,
we note that the placement in local or different rack does not
affect significantly the RTTs. The next experiment, however,
highlight that this is not always true.
RLC Buffer Size. End-to-end latency is one of the main
goals of 5G networks to enable Ultra-reliable and low latency
communications (URLLC). For URLLC, 3GPP has defined a
target user plane latency of 0.5ms for both uplink and down-
link transmissions, and a reliability requirement of 5-nines
(1−10−5) for the transmission of a 32 byte packet1. Queueing

13GPP, “Tech. Report #: 38.913, Release 14,” 2017.
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Figure 3: Measured RTT fromUE to a remote data cen-
ter (R) and local host (L) in same rack (SR) and differ-
ent rack (DR)
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Figure 4: Impact of various RLC buffer sizes on RTT
(in number of RLC SDU)

delay is one of the main factors preventing a low end-to-end
latency. The total per-user buffer space allocated for RLC
in acknowledge mode is given in number of SDU, typically
1024 for a UE cat 3, i.e., 1.4MB to accommodate 1500 bytes
long RLC SDUs. When large TCP flows and traffic from inter-
active applications are simultaneously destined to the same
user, they share the same RLC buffer. As TCP aims at filling
the buffer, the queuing delay grows significantly which is
detrimental to the performance of the interactive applica-
tions [13]. In turn, this also reduces the precision of the TCP
retransmission timeout estimation. Consequently, TCP may
experience unnecessary timeouts, causing retransmissions
and slow start, and thus leading to poor link utilization.
This experiment analyzes the latency of interactive ap-

plications while sharing the RLC buffer with a UDP flow.
The choice for UDP provides control over the target rate of
traffic injection (target bandwidth 4Mbps for 60 s). Unlike
previous research [13], we investigate performance when the
sender resides in the same rack of the host performing EPC
functionalities or in a different one. Furthermore, we provide
assessment in the presence of background traffic in the edge
data center (the hosts exchange UDP traffic with iperf in a
permutation matrix with target bandwidth of 60 Mbps for
1000 s). In Fig. 4, we verify the achievable RTTs analyzing
pcap files captured at UE, eNB and GTP0 interface. As ex-
pected, the RTTs increase with the increase of size of the RLC
buffer. Next, in Fig. 5 we verify the impact of placement and
background traffic on the achievable RTTs. The placement
in the same rack (SR) leads to better performance for any
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buffer size. When the application resides in a different rack
with background traffic (DR-bck-tr), the RTTs increase with
the increase of the buffer size. To achieve low RTTs while
placing the application in a different rack, zero background
traffic should flow in the data center (DR-no-bck-tr).
Fig. 6 shows the CPU and memory utilization measured

with the Glances monitoring tool2. We assess the case with
the sender residing in a different rack of the host perform-
ing EPC functionalities. The presence of background traffic
increases both CPU and memory utilization. For a maximum
RLC buffer size of 96 SDUs, the curves with and without
background traffic are close. The reason is that the network
topology has been created during the experiment without
background traffic.
Mobile Users. This experiment assesses the performance
of mobile users when experiencing different channel quali-
ties. To this end, one data center host simultaneously opens
two TCP connections towards different UEs. One (UE1), is
positioned at 1.4 m from the USRP with line-of-sight (LoS),
while the second (UE2) is positioned further (2.2 m) with an
obstacle obstructing the LoS. The resulting CQI reports are
in the range of 13-14 and 7-8 for UE1 and UE2 respectively.
The RLC buffer size is set to 512.

Fig. 7(a) shows the achieved throughput of both UEs. As
expected, UE1 significantly outperforms UE2 with an aver-
age throughput of 2.6 Mbps and 187.5 Kbps, respectively.
Fig. 7(b) shows performance of the two users. The graph is a
throughput-RTT plot, where for each scenario we take the
average results from pcap traces captured at the UEs and
compute the 2−σ elliptic contour of the maximum-likelihood
2D Gaussian distribution. The 2 − σ expression defines the
2Available at: https://glances.readthedocs.io/en/stable/

level of confidence, i.e., the projection on a one-dimensional
sub-space of the elliptic contour is the 95% confidence in-
terval. On the x-axis, lower (better) RTTs are to the right.
Hence, the best performing UE, UE1, is on the top-right.
Throughput-RTT plots highlight the variability and relative
performance of the metrics in the two dimensions. The nar-
rower the ellipses in the axis dimension, the more stable is
the protocol in consistently achieving similar throughput
or RTT. On the other hand, wider ellipses indicate higher
variability. The ellipses’ orientations define the relationship
between throughput and RTT. UE1 benefits from stable con-
nectivity, achieving low values of RTT and highly variable
throughput. On the contrary, the poor channel quality expe-
rienced by UE2 leads to the complete opposite performance,
with low throughput and highly variable delays due to re-
transmissions and timeouts.
ExploitingMultiple Paths.WithMultipath-TCP (MP-TCP)
[23], flows can exploit more than one path simultaneously,
by transmitting over multiple interfaces or to different IPs of
a host. MP-TCP finds applicability in both data centers and
wireless networks.

MP-TCP kernel version 0.933 does not provide a module
to support the GTP0 interface, hence we downloaded the
sources of the kernel version 4.13 which has an available MP-
TCP patch and includes the GTP module. Then we patched
the kernel with the suitable patch of MP-TCP, enabled all
the components of MP-TCP and GTP and built the kernel.
This allows to use MP-TCP through GTP tunnels. We enable
it by setting sysctl -w net.mptcp.mptcp_enabled=1.
For the experiment, we modified the original topology

defined in § 3.3, so that each host is interconnected with
four ToR switches at a time to enable multiple paths. The
hosts generate UDP background traffic with 100 Mbps of
target bandwidth according to a permutation matrix. We
send traffic from the UE to an end host in the data center
and measure the throughput observed by the segment from
EPC host to end host. Fig. 8 illustrates the significant advan-
tage that MP-TCP provides with respect to TCP in terms of
achieved throughput.

3Available at: https://www.multipath-tcp.org/
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Figure 7: Throughput and RTT performance of mobile users
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5 OPEN RESEARCH CHALLENGES AND
APPLICATION SCENARIOS

This section provides a brief overview of possible uses of
openLEON.
Transport. In edge data centers the whole transport, from
application server to the mobile terminal, is under the con-
trol of the Mobile Network Operator. Conventional transport
protocols like TCP are known to perform poorly in such a
setting. For example, a sudden cell load increase limits user
bandwidth availability [18] and the increased delay, due to
large queues at base stations, can reduce the precision of
the TCP retransmission timeout estimation. Consequently,
TCP may experience unnecessary timeouts, causing retrans-
missions and slow start, and thus leading to poor link uti-
lization. MEC architectures, bringing data center and radio
networks together, should take advantage of resource pool-
ing and information about feedback on channel quality that is
available as part of the Radio Network Information Services.
openLEON provides researchers the capability to evaluate
new protocols that respond to actual congestion rather than
packet loss (e.g., TCP BBR [1] available from kernel version
4.9) or cross-layer approaches coupling congestion control
with lower layers.
Multi-RAT. The srsLTE platform can be employed for per-
formance analysis ofmultiple radio access technologies (RAT).
Previous research provided an assessment of the coexistence
of LTE unlicensed and 802.11a/b/g/n [6]. Building on srsLTE,
openLEON provides such capability as well. As a follow-up
of the experiment on MP-TCP (§ 4.2), a promising direction
consists in analyzing the coexistence of LTE, 802.11 family,
including 802.11ad that utilizes the mm-wave 60 GHz band.

The latter offers much higher data rates, but is susceptible to
blockage, leading to interesting considerations, such as how
to determine the optimal injection rate over the multiple
interfaces to limit out-of-order reception at the receiver side.
MobileCloudComputing. Outsourcing part of the comput-
ing-intensive tasks from the resource-constrained mobile de-
vices to the cloud enables energy-savings and augments the
capabilities of mobile devices [8]. The vast majority of exper-
imental works in mobile cloud computing limits the scope
of the tests to WiFi. openLEON not only overcomes such
limitation, but also offers kernel-level access to applications.
For example, for object recognition, hosts in openLEON can
execute OpenCV4 methods for image processing and feature
extraction.

6 RELATEDWORK
This section surveys prior work on emulators for mobile
networks (LTE/5G), SDN data centers, and the few recent
proposals in the context of 5G and fog computing.
Natively, Mininet does not support specific features of

wireless links such as interference, mobility, or channel selec-
tion. To overcome such limitation, Mininet-WiFi [3] emulates
the wireless channel by exploiting Linux TC to configure the
kernel packet scheduler by setting parameters like channel
bandwidth, packet loss and delay. Other attempts aimed at
modeling wireless links within the Mininet environment use
the emulation features of ns-3 forWiFi5 and the Lena module
of ns-3 for the cellular network (OpenNet6). While OpenNet
is similar to openLEON, it is not an end-to-end emulator and
does not model the data center. An emulator for LTE using
LENA is available [15].

Closest to our work are [9, 12]. Both are experimental plat-
forms for 5G networks with SDN-control for the EPC. The
latter initiative incorporates state-of-the-art components,
such as OAI for modeling the EPC and OpenDaylight as SDN
controller. Unlike openLEON, both solutions lack the fine

4Available at: https://opencv.org/
5Available at: https://github.com/mininet/mininet/wiki/Link-modeling-us
ing-ns-3
6Available at: https://github.com/dlinknctu/OpenNet
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modeling of the properties of data center networks. Emu-
Fog [16] allows to create fog computing infrastructures en-
abling developers to incorporate network topologies into
MaxiNet. However, MaxiNet does not feature any support
for wireless communications. Hence this limits the usability
of EmuFog with IoT devices.
7 CONCLUSION
In this work, we presented openLEON, an open-source plat-
form that enables experimentation and prototyping in aMEC
context. We described the key components of openLEON,
srsLTE and Mininet, and the architectural challenges we
solved to combine them. We evaluated its computational
efficiency and assessed specific use-cases. The obtained ini-
tial results are promising and open up further areas that
are interesting for future research, for example in the con-
text of mobile cloud computing. In summary, leveraging the
presence of Radio Network Information Services (RNIS) at
edge data centers opens the door for cross-layer end-to-end
optimizations at transport, network and MAC layers.
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