
openLEON: An End-to-End Emulation Platform from the Edge Data
Center to the Mobile User

Claudio Fiandrinoa,∗, Alejandro Blanco Pizarroa, Pablo Jiménez Mateoa, Carlos Andrés Ramiroa,
Norbert Ludantb, Joerg Widmera

aIMDEA Networks Institute, Madrid, Spain
bKhoury College of Computer Sciences, Northeastern University, Boston, MA, USA

Abstract

To support next generation services, 5G mobile network architectures are increasingly adopting emerging

technlogies like software-defined networking (SDN) and network function virtualization (NFV). Core

and radio access functionalities are virtualized and executed in edge data centers, in accordance with

the Multi-Access Edge Computing (MEC) principle. While testbeds are an essential research tool

for experimental evaluation in such environments, the landscape of data center and mobile network

testbeds is fragmented. In this work, we aim at filling this gap by presenting openLEON, an open

source muLti-access Edge cOmputiNg end-to-end emulator that operates from the edge data center

to the mobile users. openLEON bridges the functionalities of existing emulators for data centers and

mobile networks, i.e., Containernet and srsLTE, and makes it possible to evaluate and validate research

ideas on all the components of an end-to-end mobile edge architecture.

Keywords: Edge Computing, data center networks, mobile networks, emulation.

1. Introduction

The concept of Multi-Access Edge Computing (MEC), formerly known as Mobile Edge Computing,

was standardized by the European Telecommunications Standards Institute (ETSI) and is one of the

key enablers for fifth-generation (5G) mobile networks [1, 2]. The MEC paradigm aims at providing

computing service closer to the end user by bringing applications and services at close distance to the5

end-user. MEC is applicable in scenarios where locality and low-latency requirements are essential [3].

As its definition suggests, MEC is not tied to a single radio technology, but embraces both cellular and

other radio access technologies such as WiFi. It is also agnostic to the evolution of the mobile network

itself and can be deployed in LTE, 4G or 5G networks. For these reason, it is crucial for mobile network

∗Corresponding author. Tel.: (+34) 91 481 6932
Email addresses: claudio.fiandrino@imdea.org (Claudio Fiandrino), alejandro.blanco@imdea.org (Alejandro

Blanco Pizarro), pablo.jimenezmateo@imdea.org (Pablo Jiménez Mateo), carlos.andres@imdea.org (Carlos Andrés
Ramiro), ludant.n@northeastern.edu (Norbert Ludant), joerg.widmer@imdea.org (Joerg Widmer)

Preprint submitted to Elsevier November 29, 2022

operators to understand the impact of MEC on overall mobile system performance in existing networks10

and to plan network upgrades.

The “edge” is a data center or nano data center deployed close to the base stations inside an

operator-owned infrastructure, typically called MEC host, that provides computing functionalities and

can aggregate virtualized core and radio network functions of the mobile network. Hence, both the

Evolved Packet Core (EPC) and Radio Access Network (RAN), in the form of a Cloud-RAN, can15

run in the same data center in a virtualized manner. MEC exploits emerging technologies such as

software-defined networking (SDN) [4] and network function virtualization (NFV) [5]. While testbeds

are essential for research, experimental evaluation and prototype development, the existing landscape

of emulators and testbeds does not offer much in the context of MEC as the available ones either target

mobile or data center networks separately.20

In this work, we aim at filling this gap by presenting openLEON, a muLti-access Edge cOmputiNg

end-to-end emulator which spans from the edge data center to the mobile users. openLEON bridges the

functionalities of existing emulators, namely srsLTE [6] for the mobile network and Containernet [7],

an extension of the popular Mininet [8], to emulate a SDN-based data center network. We make

our platform available to the community [9] and share configuration examples and application use25

cases which allows other researchers to build on them. The objective of openLEON is to enable

research experiments in the MEC domain, providing emulation of both data center and mobile network

components. While some prior work in this area exists (e.g., [10]), it onlys supports mobile network

emulation and does not include the data center environment. With Containernet, it is possible to connect

virtual data center hosts and switches through virtual Ethernet links, while packets are processed using30

the real Linux protocol stack. Furthermore, hosts have access to all kernel functions of the host. To

validate openLEON, we implement and assess several use cases, such as the caching proof-of-concept

of [10], the impact of Radio Link Control (RLC) buffer size [11] on latency and video streaming with

Dynamic Adaptive Streaming over HTTP (DASH) [12]. We also profile the computational efficiency

of openLEON for the above use cases. Note that we intentionally leave out from the openLEON35

implementation some typical cloud computing aspects such as the tuning of virtual machine allocation

policies or measuring energy consumption that are provided by simulators like CloudSimSDN [13].

The rest of the paper is organized as follows. Section 2 illustrates the rationale for the choice of

srsLTE and Containernet as basis for openLEON and provides an overview of existing emulators in the

two domains. Section 3 illustrates the openLEON platform and Section 4 provides an evaluation of the40

use cases and analyzes the computational efficiency of the platform. Section 5 outlines further open

research challenges where openLEON can be applied and Section 6 overviews related works in the area.

Finally, Section 7 concludes the work and provides final remarks.

2

2. Background and Motivation

The objective of this section is to answer the question of whether the combination of srsLTE and45

Containernet is the right set of tools to develop such a end-to-end emulator.

2.1. Emulation of Mobile Networks/LTE

Emulators duplicate both hardware and software aspects of a real-world testbed, hence providing a

significant advantage over simulators that abstract from the hardware behavior and are bounded by the

correctness of the simulation model. In the context of LTE networks, emulators can capture real-world50

channel conditions through parameters like path loss, multipath fading, delay spread, Doppler spread,

and other spatial parameters.

srsLTE [6] and OpenAirInterface (OAI) [14] are fully operational open source software implementa-

tions of LTE cellular systems. Both platforms enable the emulation on standard Linux-equipment of the

main components of an LTE network, such as the user equipment (UE) and base station (eNodeB/eNB)55

in the Radio Access Network (RAN), and the Mobility Management Entity (MME), Home Subscriber

Server (HSS), Serving and Packet Gateways (SGw and PGw) in the Evolved Packet Core (EPC). The

main difference among the two platforms is the supported specifications. OAI implements the 3rd

Generation Partnership Project (3GPP) Releases 9 and 10, whereas srsLTE is more limited and only

implements 3GPP Release 8.60

Previous research has compared the relative performance between srsLTE and OAI, highlighting

the higher computational efficiency of the latter [15]. At the same time, the modularity of the former

makes it easier for developers to customize and extend the code. In addition, other metrics should

be considered, such as the stability of the connection between core, eNB and UE. We have tested

both platforms extensively to assess such metric and the achievable data rates for different channel65

bandwidth options. A desktop computer with an Intel i7-6700 processor at 3.4 GHz and 16 GB RAM

was used to run the eNB implementation with a NI USRP-2942R as LTE base station. In addition,

the EPC application is executed in a virtual machine hosted in the same desktop computer. For the

user equipment, we use a Motorola Moto G5 Plus with a custom SIM card (the SIM card features

factory-default unique IMSI and a card-individual random subscriber authentication key (K) and70

operator code (OPC) manually registered in the HSS) to have full access to the emulated LTE network

environment.

Table 1 compares the results. While srsLTE achieves a connection stability of more than 1 hour

for 5 and 10 MHz channel bandwidth, OAI stability is lower, even dropping to less than 5 minutes

of connectivity at 20 MHz. For this reason, we opted for srsLTE as mobile network emulator in75

openLEON.

3

Table 1: Performance Analysis of srsLTE [6] and OAI [14]

Frequency

[MHz]

Speed Test [Mbps] Connection Stability [min]

srsLTE OAI srsLTE OAI

5 DL:15 - UL:9 DL:10 - UL:8 > 60 > 60

10 DL:22 - UL:13 DL:25 - UL:18 > 60 ≤ 60

20 DL:23 - UL:22 DL:45 - UL:35 ≤ 60 ≤ 5

2.2. Emulating SDN Data Center Networks

To emulate data center networks, the most widely adopted solution is Mininet [8]. Mininet is a

flexible experimental platform that allows to easily configure SDN-based network topologies comprising

virtual hosts, switches and interconnecting links. Mininet creates separated network contexts (the80

so-called network namespace mechanism) for the processes running together on a single OS kernel

with process-based virtualization. The key features of Mininet are the capability of virtual hosts to

run Unix/Linux-based applications and the use of the actual Linux network stack to process packets.

For example, it allows to perform live migration of a virtual machine [16]. The main, well-known

disadvantage of Mininet is its poor scalability on standard servers. When emulating large testbeds with85

thousands of virtual switches and high traffic load, the computational complexity of the experiment

is overwhelming. Since virtual hosts, switches and applications share the CPU cycles, such scenarios

prevent the CPU scheduler of the Linux kernel to precisely control the order of operations. Several

solutions help to overcome such shortcomings. MaxiNet [17] spans the computational effort over

multiple physical machines, achieving precise emulation of large-scale topologies with thousands of90

nodes. Virtual-Time Mininet [18] resorts on the time-dilatation technique, i.e., the emulated time

slows down with respect to real time by a given factor (time-dilatation factor). For example, with a

time-dilatation factor equal to 10, every 10 s of real-time corresponds to 1 s of emulated time.

A common disadvantage of all the above platforms is the lack in providing isolation to the applications.

While Mininet features network isolation, the processes and the file system of the physical machine95

remain shared among all the Mininet hosts. Conversely, Docker containers provide full isolation of the

applications and can replace traditional Mininet hosts as both support virtual Ethernet (veth) devices

technology. In Mininet, hosts and switches are connected through a veth pair, which allows Docker

containers to seamlessly substitute Mininet hosts. This insight is the base for MEDICINE [7] and

Containernet [19]. The former is a NFV prototype platform that allows researchers and practitioners100

to develop services controlled by standard Management and Orchestration (MANO) systems as in

real-world deployments. MEDICINE builds on Containernet, which extends Mininet in numerous ways.

First and foremost, it supports Docker containers in addition to regular hosts. Second, it allows to

4

configure resource limitations such as the memory limit and the CPU share of each container as well as

to bind it to a specific CPU core. Third, it allows for changes of such configuration at runtime.105

For the prototype implementation of openLEON, we rely on Containernet. Given that edge data

centers are much smaller than conventional clouds, the computational effort is not excessive to require

to be split over multiple physical machines. Thus, Containernet that extends Mininet is sufficient and

general enough to emulate both networking and computing aspects of the edge data center.

3. The openLEON platform110

This section presents the design of openLEON and the methodology to interconnect srsLTE and

Containernet.

3.1. Requirements

The design of openLEON satisfies the following requirements:

• Maintain high fidelity in the respective environments, i.e., to incorporate network topologies that115

faithfully reproduce in smaller scale those of data center networks and the current LTE stack to

guarantee correct handling of the mobile traffic.

• At the same time, the programming environment should not restrict the users to explore and

research alternative solutions, i.e., the platform should be flexible enough to allow to easily

emulate other data center network topologies and to extend the functionalities of the mobile120

network.

In order to meet these design requirements, openLEON has to overcome a number of challenges that

are explained in the next section.

3.2. The Methodology for Interconnection

In conventional EPC, specific interfaces interconnect the components, namely S1: S/PGw ↔ eNB,125

S11: SGw ↔ MME, and S6: HSS ↔ MME. To build openLEON, we seek a solution that allows to

execute the functionalities of such components within a nano-data center topology. This translates

into executing the corresponding script srsEPC from regular Mininet hosts, which is possible given

the capability of the hosts to run applications through xterm terminals. For the sake of simplicity, we

resort to execute all the scripts in one host (see Fig. 1), thus not making explicit the aforementioned130

S1, S6 and S11 interfaces.

The overall architecture of openLEON is shown in Fig. 2. The eNB application (srsENB) is executed

on a physical machine (see left part of 1). Another machine hosts Containernet and executes the

EPC functionalities (srsEPC application). We set a 10.0.0.0/12 network for Containernet and a

5

Containernet Hosts srsEPC

srsENB

Mininet Hosts

USRP

Figure 1: The openLEON testbed

EPC
10.0.0.1 - 10.16.0.1

· · ·Hosts

Top of Rack

Aggregation

Core

Layers SDN Controller NAT

10.0.0.65 192.168.100.1

Containernet and EPC - 10.0.0.0/12

eNB

192.168.100.2

10.16.0.2

UE
10.16.0.3

Internet

GTP

Figure 2: The architectural components - block diagram

192.168.100.0/24 network to interconnect the physical machines. A PCI Express link interconnects135

the machine performing eNB processing with the USRP. For the development of openLEON, we tested

both Ettus B210 and NI USRP-2942R (with updated PCI Express driver). Such a solution offers the

same sample rate (200 MS/s with 16-bit I/Q) as a 10 Gigabit Ethernet connection, with the advantage

that no manual IP and MTU size configuration is required from user side. A regular Mininet host (not

Docker container) performs NAT functions, bridging the virtual environment interfaces of the edge data140

center network with the physical machine. We use a 10.16.0.0/12 network for the GPRS Tunneling

Protocol (GTP) that provides user-plane connectivity between the S/PGw and the eNB. Given the

multi-level virtualized environment and the presence of the GTP tunnel, it is important to properly set

up the routing.

openLEON makes the following changes to the routing tables to enable end-to-end connectivity:145

• Configuration of the gtp_bind_addr of the eNB setting (enb.conf) to be in the 192.168.100.0/24

network, e.g., 192.168.100.1.

6

• In the physical machine, two entries are included to route traffic from the data center and from

the mobile users;

• The traffic generated by the UE and destined to the edge data center is routed via the eNB;150

• Traffic generated by Containernet hosts and destined to the mobile users is routed through the

EPC host.

We tested the routing configuration using pings, for both smartphones equipped with custom SIM

cards and laptops with Nuand BladeRF x40 Software Defined Radios (SDRs) and Ettus B210 as the end

devices. Both BladeRFs and Ettus B210 are inexpensive SDRs enabling the setup of a LTE compliant155

pico cell or UE, offering respectively up to 30 and 56 MHz I/Q sampling rate which is sufficient to decode

the 20 MHz LTE channel. For the case of BladeRF and Ettus B210 UEs, bidirectional connectivity is

established directly, while for smartphones root privileges are necessary, since commercially available

smartphones do not reply to pings.

Finally, we tested the connection stability. Whenever the USRP UHD driver faces problems in160

sending or receiving samples, it issues late packet messages to inform the user about the internal

clock desynchronization that disrupts the connectivity and brings down the network interfaces. As a

consequence, the route from the eNB to the EPC host is lost. To overcome this problem, we periodically

check the configuration with traceroute and re-establish connectivity if necessary.

3.3. The Data Center Topology165

Currently, the vast majority of data centers implement a 3-Tier architecture, which is based on a

classical 5-stage Clos network and consists of three levels of switches, Top of Rack (ToR), aggregation

and core [20]. As default data center topology, openLEON implements in Containernet a 3-Tier

architecture with 2 core switches, 2 aggregation switch per-core switch and a total of 64 hosts arranged

into 8 racks (where a rack comprises the servers and ToR switches within one physical cabinet). In170

addition, we create an additional host with NAT functionalities interconnected with the core switches.

In Containernet/Mininet, the reference SDN controller (ovs-controller from Mininet 2.0.0) does not

implement the spanning-tree protocol by default. Since data center topologies have inherent loops, we

instead use a RYU controller. RYU is a Python module that supports OpenFlow protocol and provides

an API that facilitates network management and control.175

4. Use Case Evaluation

This section validates the performance of the platform by evaluating a series of use cases (Section 4.2)

and analyzing its computational efficiency (Section 4.3).

7

4.1. Testbed Configuration

For the experiments, we configured openLEON as follows. The laptop running the srsEPC application180

from srsLTE version 18.3.1 and Containernet is equipped with an Intel i7-4600U processor at 2.10 GHz,

8 GB RAM and Linux Ubuntu 16.04 LTS. The srsENB application from srsLTE version 18.3.1 runs

over a desktop computer equipped with an Intel i7-6700 processor running at 3.4 GHz, 16 GB RAM

and Linux Ubuntu 16.04 LTS. The LTE station consists of an Ettus B210 connected with USB 3.0

connectivity with the desktop computer. By default, as UEs, we use preferentially a laptop with an185

Intel i7-4600U processor up to 2.1 GHz and 8 GB of RAM and as second UE a laptop with an Intel

i5-4200U processor up to 2.6 GHz and 16 GB of RAM. Those are connected to Nuand BladeRF x40

SDRs. For the experiment with distributed edge data centers and video streaming, the UE is a desktop

computer equipped with an Intel i7-6700 processor running at 3.4 GHz, 16 GB RAM and Linux Ubuntu

16.04 LTS wireless connected to the base station with an Ettus B210. Unless otherwise stated, the190

data center network is the one described in § 3.3.

4.2. Experiments

Caching. ETSI has defined six relevant use cases for MEC: video analytics, location services, Internet-

of-Things (IoT), augmented reality, optimized local content distribution, and data caching [1]. The

latter use case enables faster response and alleviates congestion in the core. Previous work with OAI195

platform highlighted the benefit of local caching at the eNB or at the MEC host compared to non-local

caching [10]. However, the case with packet caching at MEC hosts does not take into account the

characteristics of a data center topology. In this experiment, we fill this gap and analyze the RTT

achieved with different options for content placement, namely local caching at the edge data center in a

randomly selected host in the same and different rack of the host with EPC functionalities. We conduct200

experiments by generating traffic with the ping utility, and compare the performance of local caching

versus non-local caching, where the UE connects to the Global Amazon AWS service based in Seattle.

For the experiment, a total of 120 echo requests over 120 seconds are transmitted, with the packet size

set to 64, 768, 2048, 4096, and 8192 bytes. The UE is placed at 2 m in line of sight of the USRP to

ensure a stable channel quality. The hosts in the data center generate UDP background traffic with205

200 Mbps of target bandwidth with the iperf tool according to a pre-configured permutation matrix

(each host generates iperf traffic towards another host randomly chosen so that each host is at the same

time transmitting and receiving traffic).

Fig. 3 shows the results in form of a box-plot (left axis) and depicts the fraction of timed-out packets

(right axis), i.e., the packets for which the ping utility has waited a reply for a certain amount of time210

(twice the length of the maximum RTT by default). First, we observe that as expected the higher

number of outliers (depicted with crosses) and timed-out packets occur for non-local caching tests.

8

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m
ed
-o
ut

Pa
ck
et
s

25

50

100

200

400

R
-6

4
B

L
-S

R
-6

4
B

L
-D

R
-6

4
B

R
-7

68
B

L
-S

R
-7

68
B

L
-D

R
-7

68
B

R
-2

04
8
B

L
-S

R
-2

04
8
B

L
-D

R
-2

04
8
B

R
-4

09
6
B

L-
SR

-4
09
6
B

L
-D

R
-4

09
6
B

R
-8

19
2
B

L
-S

R
-8

19
2
B

L
-D

R
-8

19
2
B

RT
T
(m

s)

Figure 3: Measured RTT from UE to a remote data center (R) and local host (L) in same rack (SR) and different rack

(DR)

Although latency-sensitive applications can considerably benefit from RTTs with low-variability, the

ping utility can not measure jitter accurately as the echo replies depend on the OS scheduler of the end

host, which introduces jitter itself. Second, for a small packet size (64-768 bytes), the advantage of215

local caching is significant. For intermediate packet sizes (2048-4096 bytes), the statistical difference

in RTTs is negligible while for large packet size (8192 bytes) local caching does not bring any benefit

apparently. However, this is not true, as the fraction of timed-out packets for non-local caching exceeds

70% while it is null for both local caching cases. Interestingly, we note that the placement in local or

different rack does not affect significantly the RTTs. The next experiment, however, highlights that220

this is not always true.

RLC Buffer Size. End-to-end latency is one of the main goals of 5G networks to enable Ultra-Reliable

and Low Latency Communications (URLLC). For URLLC, 3GPP has defined a target user plane

latency of 0.5 ms for both uplink and downlink transmissions, and a reliability requirement of 5-nines

(1−10−5) for the transmission of a 32 byte packet1. Queueing delay is one of the main factors preventing225

a low end-to-end latency. The total per-user buffer space allocated for RLC in acknowledge mode is

given in number of SDU, typically 1024 for a UE cat 3, i.e., 1.4 MB to accommodate 1500 bytes long

RLC SDUs. When large TCP flows and traffic from interactive applications are simultaneously destined

to the same user, they share the same RLC buffer. As TCP aims at filling the buffer, the queuing delay

grows significantly which is detrimental to the performance of the interactive applications [11]. In turn,230

this also reduces the precision of the TCP retransmission timeout estimation. Consequently, TCP may

experience unnecessary timeouts, causing retransmissions and slow start, and thus leading to poor link

utilization.

This experiment analyzes the latency of interactive applications while sharing the RLC buffer with

13GPP, “Tech. Report #: 38.913, Release 14,” 2017.

9

512 256 960

50

100

150

200

RT
T
(m

s)

Figure 4: Impact of various RLC buffer sizes on RTT (in number of RLC SDU)

SR DR-bck-tr DR-no-bck-tr0

25

50

100

200

RT
T
(m

s)

(a) Buffer size 96

SR DR-bck-tr DR-no-bck-tr0

25

50

100

200

RT
T
(m

s)

(b) Buffer size 256

SR DR-bck-tr DR-no-bck-tr0

25

50

100

200

RT
T
(m

s)

(c) Buffer size 512

Figure 5: Impact on RTT of various RLC buffer sizes (in number of RLC SDU), application placement in data center

network - same rack (SR) or different rack (DR) of the EPC host - and presence of background traffic

a UDP flow. The choice for UDP provides control over the target rate of traffic injection (target235

bandwidth 4 Mbps for 60 s). Unlike previous research [11], we investigate performance when the sender

resides in the same rack of the host performing EPC functionalities or in a different one. Furthermore,

we provide an assessment in the presence of background traffic in the edge data center (the hosts

exchange UDP traffic with iperf in a permutation matrix with target bandwidth of 60 Mbps for 1000 s).

In Fig. 4, we verify the achievable RTTs analyzing pcap files captured at UE, eNB and GTP0 interface.240

As expected, the RTTs increase with the increase of size of the RLC buffer. Next, in Fig. 5 we verify

the impact of placement and background traffic on the achievable RTTs. The placement in the same

rack (SR) leads to better performance for any buffer size. When the application resides in a different

rack with background traffic (DR-bck-tr), the RTTs increase with the increase of the buffer size. To

achieve low RTTs while placing the application in a different rack, zero background traffic should flow245

in the data center (DR-no-bck-tr).

Distributed Edge Data Centers. To achieve low latency, proper configuration of the RLC buffer is

of help, but other solutions could be considered as well. For example, to overcome the delays generated

by heavy background traffic in the edge data center network, a delay-constrained service could be

migrated to a nearby edge data center. Fig. 6 shows the network topology considered: two edge data250

centers, EDC1 and EDC2 are interconnected through a 2 ms delay link at 1 Gbps. For simplicity, each

edge data center consists of 2 regular Mininet hosts and 4 Containers. EDC1 features 2 additional

hosts for EPC and NAT functionalities and 2 switches provide interconnection to the hosts with 1 Gbps

10

APP

EDC 2

EPCAPP

EDC 1
2 ms

eNB UE

Figure 6: Architecture with distributed data centers

links. Only one switch interconnects the hosts of EDC2 at the same speed. This minimal configuration

is realistic enough to verify the benefit of migrating the service from EDC1 to EDC2 when heavy255

background traffic makes the former congested.

Fig. 7(a) compares the RTT achieved by executing the ping application from the APP node in the

edge data centers to the UE. A total of 10 echo requests with packet size set to 64 Bytes are transmitted

per run and the results are averaged over 30 runs. An interval of 4 s divides two subsequent runs.

Obviously, the lowest RTT is achieved when the service is deployed in EDC1 and no background traffic260

is present (32.12 ms). By opening 50 parallel iperf TCP sessions among the regular hosts of EDC1

(each host is at the same time server and client, thus accounting for a total of 100 TCP connections

contending for network resources) the network becomes congested and the RTT of the ping application

spikes to 41.34 ms. Please note that we exploit version 2 of the tool because it is multi-threaded and

achieves superior performance with parallel streams than iperf3 which is single-threaded. Under such265

conditions, migrating the service to EDC2 may be beneficial and we assess how far away EDC2 can be

so that service migration is beneficial. When the delay of the link is lower than 6 ms, the achieved

RTTs are on average 35.84 and 38.90 ms with 2 and 4 ms link delay respectively. This corresponds to a

gain of 15% and 6% without having the UE to change any configuration as it remains attached to

the same eNB. When the delay of the link interconnecting EDC1 and EDC2 is above 6 ms, there is270

no advantage in migrating the service as the average RTT is 44.83 ms, much larger than maintaining

the service at EDC1. If such a link is optical fiber (3.34 µs propagation delay per kilometer), 100 km

length would approximately lead to 1 ms round-trip delay for an uncongested path. Hence, the distance

between EDC2 and EDC1 has to be shorter than 400 km approximately in order for the migration to

be beneficial.275

Fig. 7(b) and Fig. 7(c) show respectively the RTT of the interactive application varying the amount

of background traffic and the overall network throughput of EDC1. As expected, by opening an

increasing number of parallel connections, both RTT and overall throughput worsen.

Mobile Users. This experiment assesses the performance of mobile users with different channel

qualities. To this end, one data center host simultaneously opens two TCP connections towards different280

UEs. UE1 is positioned at 1.4 m from the USRP with line-of-sight (LoS), while UE2 is positioned

11

EDC1-
no-bck-tr

EDC1-
bck-tr

EDC2-
2ms

EDC2-
4ms

EDC2-
6ms

0

10

20

30

40

50

R
T

T
(m

s)

(a) Latency comparison

no-bck-tr 2-flows 25-flows 50-flows
0

10

20

30

40

50

R
T

T
(m

s)

(b) Impact of background traffic on la-

tency

2-flows 25-flows 50-flows
0

200

400

600

800

1,000

T
hr

ou
gh

pu
t(

M
bp

s)

(c) Throughput of background traffic

Figure 7: Migration of a latency-sensitive service in distributed data centers

0 10 20 30 40 50 600.0

1.5

3.0

4.5

6.0

Time (s)

Th
ro
ug

hp
ut

(M
bp

s)

UE1 UE2

(a) Throughput analysis

0.000.050.100.150.200.25

0.0

1.5

3.0

4.5

6.0

RTT (s)
Th

ro
ug

hp
ut

(M
bp

s)

UE1 UE2

(b) Joint throughput and RTT analysis

Figure 8: Throughput and RTT performance of mobile users

further at 2.2 m with an obstacle obstructing the LoS. The resulting CQI reports are in the range of

13-14 and 7-8 for UE1 and UE2 respectively. The RLC buffer size is set to 512.

Fig. 8(a) shows the achieved throughput of both UEs. As expected, UE1 significantly outperforms

UE2 with an average throughput of 2.6 Mbps compared to 187.5 Kbps that UE2 achieves. Fig. 8(b)285

shows performance of the two users. The graph is a throughput-RTT plot, where for each scenario we

take the average results from pcap traces captured at the UEs and compute the 2−σ elliptic contour of

the maximum-likelihood 2D Gaussian distribution. The 2− σ expression defines the level of confidence,

i.e., the projection on a one-dimensional sub-space of the elliptic contour is the 95% confidence interval.

On the x-axis, lower (better) RTTs are to the right. Hence, the best performing UE, UE1, is on the290

top-right. Throughput-RTT plots highlight the variability and relative performance of the metrics in

the two dimensions. The narrower the ellipses in the axis dimension, the more stable is the protocol in

consistently achieving similar throughput or RTT. On the other hand, wider ellipses indicate higher

variability. The ellipses’ orientations define the relationship between throughput and RTT. UE1 benefits

from stable connectivity, achieving low values of RTT and highly variable throughput. On the contrary,295

the poor channel quality experienced by UE2 leads to the complete opposite performance, with low

throughput and highly variable delays due to retransmissions and timeouts.

Exploiting Multiple Paths. With Multipath-TCP (MP-TCP) [21], flows can exploit more than

one path simultaneously, by transmitting over multiple interfaces or to different interfaces of a host.

12

10−1 100 101 102 103

MP-TCP

TCP

�roughput (Mbps)
Figure 9: Performance of MP-TCP and TCP

MP-TCP finds applicability in both data centers and wireless networks.300

MP-TCP kernel version 0.932 does not provide a module to support the GTP interface, hence we

downloaded the sources of the kernel version 4.13 which has an available MP-TCP patch and includes

the GTP module. Then we patched the kernel with the suitable patch of MP-TCP, enabled all the

components of MP-TCP and GTP and built the kernel. This allows to use MP-TCP through GTP

tunnels. We enable it by setting sysctl -w net.mptcp.mptcp_enabled=1.305

For the experiment, we modified the original topology defined in § 3.3, so that each host is

interconnected with four ToR switches at a time to enable multiple paths. The hosts generate UDP

background traffic with 100 Mbps of set bandwidth according to a permutation matrix. We send traffic

from the UE to an end host in the data center and measure the throughput observed by the segment

from EPC host to end host. Fig. 9 illustrates the significant advantage that MP-TCP provides with310

respect to TCP in terms of achieved throughput.

Video Streaming. Nowadays, the majority of video traffic is delivered over the Internet with Dynamic

Adaptive Streaming over HTTP (DASH) [12]. With DASH, a video is split into a number of chunks (e.g.,

a 4 s long block) encoded at different bit rates and stored with a descriptor named Media Presentation

Description (MPD). The DASH client player estimates the available bandwidth and indicates to the315

server which chunk representation, i.e., bit rate, to download among those listed by the MDP. This

technique is called Adaptive Bit Rate (ABR) selection and allows content providers to optimize video

quality. In the literature, numerous ABR techniques have been proposed [22]. Some solely rely on

throughput-based estimation for the bit-rate selection, others on buffer occupancy at the client or on

estimation of the chunk download time.320

With this experiment, we expose how to perform experiments with ABR video streaming over

openLEON (see Fig. 10). We choose the popular BigBuckBunny video3 and encode it with the ffmpeg

tool at different resolutions:

2Available at: https://www.multipath-tcp.org/
3Available at: https://peach.blender.org/

13

HTTP Server

srsENB
srsEPC

DASH Player

USRP UE
USRP ENB

Figure 10: Implementation of DASH application over openLEON

• 256× 144 at a bit rate of 500 Kbps;

• 858× 480 at a bit rate of 2800 Kbps;325

• 1280× 720 at a bit rate of 6000 Kbps.

At the server side, we open a Node.js http-server from a regular Mininet node and enable Cross-Origin

Resource Sharing (CORS). At the client side, we install the DASH.js reference player4 and extend it to

output on file statistics about video buffer level and video bit rate by default available in the main page

(see lower part of DASH player in Fig. 10). By default, the DASH.js player exploits Buffer Occupancy330

based Lyapunov Algorithm (BOLA) [23], an ABR technique that determines the bit rate selection by

solving an optimization problem that only requires knowledge about the amount of buffered data at

the player, i.e., the chunks stored prior rendering on the screen.

Fig. 11 analyzes Modulation and Coding Scheme (MCS) used at the eNB, the throughput and video

statistics at the UE. We compare two different scenarios. In the first one, the UE experiences good335

propagation conditions leading to an average throughput of more than 18 Mbps (see Fig. 11(a)). In the

second one, the UE is positioned 2.2 m further from the eNB with an obstacle obstructing the LoS,

which makes the throughput be consistently below 10 Mbps (see Fig. 11(b)).

At video start-up, in both scenarios BOLA buffers nearly 27 s of video and quickly ramps-up to

achieve the highest resolution available, and in turn, the highest bit rate. This drains the buffer quickly340

and leads to a downgrade in resolution. BOLA’s optimization algorithm is driven by two components,

the average bit rate of the video (i.e., the encoding quality) and the duration of re-buffering, i.e., the

chunks that are download more than once. This makes BOLA robust towards throughput variations

that do not significantly affect the bit rate selection as is evident in Fig. 11(a). In such scenario, with

4Available at: https://github.com/Dash-Industry-Forum/dash.js

14

56,900.0156,920.0156,940.0156,960.0156,980.0157,000.0157,020.0157,040.01
0

10

20

30
M

C
S

in
de

x

−10 0 10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

Th
ro

ug
hp

ut
(M

bi
t/s

)

0 20 40 60 80 100 120
0

10

20

30

Time (s)

Bu
ffe

r[
s]

0

2 000

4 000

6 000

Bi
tr
at
e
(K

bp
s)

(a) High CQI

55,039.99 55,059.99 55,079.99 55,099.99 55,119.99 55,139.99 55,159.99 55,179.99
0

10

20

30

M
C

S
in

de
x

−10 0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

10

20

30

Th
ro

ug
hp

ut
(M

bi
t/s

)

0 20 40 60 80 100 120
0

10

20

30

Time (s)

Bu
ffe

r[
s]

0

2 000

4 000

6 000

Bi
tr
at
e
(K

bp
s)

(b) Low CQI

Figure 11: MCS, throughput, bit rate and buffer occupancy of video streaming application

higher available throughput, BOLA successfully recovers the highest encoding quality to provide a345

richer experience. Conversely, in Fig. 11(b), such an attempt (near the 60 s mark) leads to a quick

buffer drain and re-buffering, which makes BOLA downgrade again the encoding quality.

4.3. Computational Efficiency

Fig. 12 shows the CPU utilization measured with the Glances monitoring tool5 for the majority of

the above use cases. We measure both user and system CPU performance, i.e., the CPU consumption350

due to userspace and OS kernel processes. The tool records measurements with a 3 ms granularity on

the laptop running Containernet and the srsEPC application.

Starting Containernet is computationally intensive, with user CPU reaching up to 51.8% and system

CPU load reaching up to 19.6%. Subsequent operations such as starting the srsEPC application, the

connection of the UE and starting the HTTP-server do not impact the CPU load at all. We now355

analyze three different applications: video streaming, CPU load generator and iperf. The video is

streamed for 3 minutes with the set-up described in Subsection 4.2 and streaming has a minor impact

on the CPU load. We next instruct two Containernet hosts with LoadGen image that generate CPU

load6 to run for 1 minute on the same core and to load the CPU at 40%. Within Containernet, the two

Containernet hosts were set in the edge data center network topology by using the following command:360

d1 = net . addDocker (’ d1 ’ , ip = ’10 . 0 . 0 . 3/24 ’ , dimage="fu r i ou s g e o r g e / cpuload " ,

5Available at: https://glances.readthedocs.io/en/stable/
6Available at: https://github.com/hannah98/docker-cpuload

15

10
:4

6:
00

10
:4

7:
00

10
:4

8:
00

10
:4

9:
00

10
:5

0:
00

10
:5

1:
00

10
:5

2:
00

10
:5

3:
00

10
:5

4:
00

10
:5

5:
00

10
:5

6:
00

10
:5

7:
00

10
:5

8:
00

10
:5

9:
00

0

20

40

60

80 Containernet
Starts

srsEPC
UE

connected

HTTP-Server

Video

L
oa

dG
en

ip
er

f

Time (s)

C
PU

38,800 38,900 39,000 39,100 39,200 39,300 39,400 39,500 39,600

0

20

40

60

80

User System

Figure 12: CPU utilization of Containernet for a number of applications

cpu_period=50000)

d2 = net . addDocker (’ d2 ’ , ip = ’10 . 0 . 0 . 4/24 ’ , dimage="fu r i ou s g e o r g e / cpuload " ,

cpu_period=50000)

Fig. 12 confirms that the user CPU load remains close to 40%, with some marginal overhead. The365

last experiment consists in running from 2 regular Mininet hosts, 50 parallel TCP iperf sessions for

1 minute. Please note that each host is both client and server at the same time, hence a total of 100

connections are active simultaneously. With this application, the system CPU load averages 52% and

the user CPU load remains around 9%. Unlike the CPU load generator application, packet processing

heavily involves the Linux kernel and this explains why this load is accounted as system CPU.370

5. Open Research Challenges and Application Scenarios

This section provides a brief overview of possible uses and application areas of openLEON and

exposes as well open research challenges.

Transport. In edge data centers the whole transport, from application server to the mobile terminal,

is under the control of the mobile network operator. Conventional transport protocols like TCP are375

known to perform poorly in such a setting. For example, a sudden cell load increase limits user

bandwidth availability [24] and the increased delay, due to large queues at base stations, can reduce

the precision of the TCP retransmission timeout estimation. Consequently, TCP may experience

unnecessary timeouts, causing retransmissions and slow start, and thus leading to poor link utilization.

MEC architectures, bringing data center and radio networks together, should take advantage of resource380

pooling and information about feedback on channel quality that is available as part of the Radio

Network Information Services. openLEON provides the researchers with the capability to evaluate

16

various transport protocols or cross-layer approaches coupling congestion control with lower layers.

Some examples of such protocols are:

• TCP BBR [25], available from kernel version 4.9, responds to actual congestion rather than packet385

loss like TCP CUBIC, the de-facto protocol implemented in the Linux kernel. Specifically, BBR

estimates the delivery rate at the receiver to determine the bottleneck link capacity and send

exactly at this rate.

• Quick UDP Internet Connection (QUIC) [26] and Multipath QUIC [27]. Google has developed

QUIC by combining functionalities of HTTP/2, TLS, and TCP. QUIC runs over UDP and390

nowadays it accounts for nearly 10% of the total Internet traffic. Multipath QUIC extends QUIC

to allow a single connection to exploit different paths in analogy to MP-TCP.

Multi-RAT. The srsLTE platform can be employed for performance analysis of multiple radio access

technologies (RAT). Previous research provided an assessment of the coexistence of LTE unlicensed and

802.11a/b/g/n [6]. Building on srsLTE, openLEON provides such capability as well. As a follow-up of395

the experiment on MP-TCP (§ 4.2), a promising direction consists in analyzing the coexistence of LTE

and 802.11 family, including 802.11ad that utilizes the mm-wave 60 GHz band. The latter offers much

higher data rates, but is susceptible to blockage, leading to interesting considerations, such as how to

determine the optimal injection rate over the multiple interfaces to limit out-of-order reception at the

receiver side.400

The concept of such multi-RAT LTE and WLAN integration (LWA) is not new and was first

introduced by 3GPP in Release 13 and successively extended in Release 14 [28]. With LWA, a single

TCP connection is split at the Packet Data Convergence Protocol (PDCP) layer of LTE base stations.

Thus, the LWA path scheduler takes decisions at the last mile and not at the source as MP-TCP does

by considering instantaneous radio conditions and congestion situations. A preliminary work in the405

area exposed the capability of LWA in achieving higher link utilization and fairness than MP-TCP [29].

Mobile Cloud Computing. Outsourcing part of the computing-intensive tasks from the resource-

constrained mobile devices to the cloud enables energy-savings and augments the capabilities of mobile

devices [30]. The challenge is to precisely estimate the amount of time it takes to offload and execute

a task over a remote entity (edge/cloud). This can be done, for example, by means of learning410

algorithms [31]. The vast majority of experimental works in mobile cloud computing limits the scope of

the tests to WiFi. openLEON not only overcomes such limitation, but also offers kernel-level access to

applications. For example, for object recognition, hosts in openLEON can execute OpenCV7 methods

for image processing and feature extraction.

7Available at: https://opencv.org/

17

6. Related Work415

This section surveys prior work on emulators for mobile networks (LTE/5G), SDN data centers,

and the few recent proposals in the context of 5G and fog computing.

Natively, Mininet does not support specific features of wireless links such as interference, mobility,

or channel selection. To overcome such limitation, Mininet-WiFi [32] emulates the wireless channel by

exploiting Linux Traffic Control utility to configure the kernel packet scheduler by setting parameters420

like channel bandwidth, packet loss and delay. Other attempts aimed at modeling wireless links within

the Mininet environment use the emulation features of ns-3 for WiFi8 and the Lena module of ns-3

for the cellular network (OpenNet9). While OpenNet is similar to openLEON, it is not an end-to-end

emulator and does not model the data center. An emulator for LTE using LENA is available [33].

Closest to our work are [34, 35]. Both are experimental platforms for 5G networks with SDN-control425

for the EPC. The latter initiative incorporates state-of-the-art components, such as OAI for modeling

the EPC and OpenDaylight as SDN controller. POSENS [36] features an end-to-end network slicing

protocol stack and implements all the components of the mobile network (UE, RAN, core network) and

an orchestration framework. Unlike openLEON, all the above solutions lack the fine modeling of the

properties of data center networks.430

A number of emulation platforms have been recently proposed in the area of fog computing.

EmuFog [37] allows to create fog computing infrastructures enabling developers to incorporate network

topologies into MaxiNet. However, MaxiNet does not feature any support for wireless communications.

Hence this limits the usability of EmuFog with IoT devices. MockFog [38] is an emulation platform

that captures well the computing dynamics and host the entire emulation process of applications435

over computing, storage and memory resources in the cloud. In other words, MockFog emulates fog

architectures consisting of edge devices such as Raspberry Pis, cloudlets and clouds over infrastructures

like Amazon EC2. The main shortcoming of such approach is the poor emulation of network dynamics

as no notion of protocols nor technology is given. Specifically, MockFog captures simple parameters like

incoming/outgoing maximum rates, delay, losses, reordering time, duplicate packets. Unlike MockFog,440

EmuEdge [39] strengths significantly the precision of network emulation that is based on Linux network

namespaces. From the computing size, by means of Xen EmuEdge supports both containers and virtual

machines. Unlike openLEON, all the above solutions fail to capture the dynamics of the cellular mobile

network.

8Available at: https://github.com/mininet/mininet/wiki/Link-modeling-using-ns-3
9Available at: https://github.com/dlinknctu/OpenNet

18

7. Conclusion445

In this work, we presented openLEON, an open-source platform that enables experimentation and

prototyping in a MEC context. We described the key components of openLEON, srsLTE and Contain-

ernet, and the architectural challenges we solved to combine them. We evaluated its computational

efficiency and assessed specific use-cases. The obtained initial results are promising and open up further

areas that are interesting for future research, for example in the context of mobile cloud computing. In450

summary, leveraging the presence of Radio Network Information Services at edge data centers opens

the door for cross-layer end-to-end optimizations at transport, network and MAC layers.

Acknowledgment

This work is partially supported by the the Madrid Regional Government through the TAPIR-CM

program (S2018/TCS-4496) and the Juan de la Cierva grant from the Spanish Ministry of Science,455

Innovation and Universities (FJCI-2017-32309).

[1] F. Giust, X. Costa-Perez, A. Reznik, Multi-access edge computing: An overview of ETSI MEC

ISG, IEEE 5G Tech Focus 1 (4).

[2] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, D. Sabella, On multi-access edge com-

puting: A survey of the emerging 5G network edge cloud architecture and orchestration, IEEE460

Communications Surveys Tutorials 19 (3) (2017) 1657–1681. doi:10.1109/COMST.2017.2705720.

[3] F. Giust, G. Verin, K. Antevski, J. Chou, Y. Fang, W. Featherstone, et al., MEC deployments in

4G and evolution towards 5G, ETSI White Paper (Feb 2018).

[4] K. Kirkpatrick, Software-defined networking, Communications of the ACM 56 (9) (2013) 16–19.

[5] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, R. Boutaba, Network function465

virtualization: State-of-the-art and research challenges, IEEE Communications Surveys Tutorials

18 (1) (2016) 236–262.

[6] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano, C. Cano, D. J. Leith, srsLTE:

An open-source platform for lte evolution and experimentation, in: Proc. of ACM WiNTECH,

2016, pp. 25–32.470

[7] M. Peuster, H. Karl, S. van Rossem, MeDICINE: Rapid prototyping of production-ready net-

work services in multi-PoP environments, in: Proc. of IEEE NFV-SDN, 2016, pp. 148–153.

doi:10.1109/NFV-SDN.2016.7919490.

19

[8] B. Lantz, B. Heller, N. McKeown, A network in a laptop: Rapid prototyping for software-defined

networks, in: Proc. of ACM Hotnets-IX, 2010, pp. 1–6.475

[9] C. Fiandrino, A. B. Pizarro, P. J. Mateo, C. A. Ramiro, N. Ludant, J. Widmer, openLEON: an

open source multi-access edge computing emulator, available at https://openleon.networks.im

dea.org/ (May 2019).

[10] C.-Y. Chang, K. Alexandris, N. Nikaein, K. Katsalis, T. Spyropoulos, MEC architectural implica-

tions for LTE/LTE-A networks, in: Proc. of ACM MobiArch, 2016, pp. 13–18.480

[11] R. Kumar, A. Francini, S. Panwar, S. Sharma, Dynamic control of RLC buffer size for latency

minimization in mobile RAN, in: IEEE WCNC, 2018, pp. 1–6.

[12] M. Graf, C. Timmerer, C. Mueller, Towards bandwidth efficient adaptive streaming of omnidirec-

tional video over HTTP: Design, implementation, and evaluation, in: Proc. of ACM MMSys, 2017,

pp. 261–271. doi:10.1145/3083187.3084016.485

[13] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, R. Buyya, CloudSimSDN: Modeling and

simulation of software-defined cloud data centers, in: IEEE/ACM CCGrid, 2015, pp. 475–484.

[14] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, C. Bonnet, Openairinterface: A

flexible platform for 5G research, ACM SIGCOMM Comput. Commun. Rev. 44 (5) (2014) 33–38.

[15] F. Gringoli, P. Patras, C. Donato, P. Serrano, Y. Grunenberger, Performance assessment of open490

software platforms for 5G prototyping, IEEE Wireless Communications 25 (5) (2018) 10–15.

doi:10.1109/MWC.2018.1800049.

[16] E. Keller, S. Ghorbani, M. Caesar, J. Rexford, Live migration of an entire network (and its hosts),

in: Proc. of ACM HotNets-XI, 2012, pp. 109–114.

[17] P. Wette, M. Dräxler, A. Schwabe, MaxiNet: Distributed emulation of software-defined networks,495

in: IFIP Networking, 2014, pp. 1–9.

[18] J. Yan, D. Jin, VT-Mininet: Virtual-time-enabled mininet for scalable and accurate software-define

network emulation, in: Proc. of ACM SOSR, 2015, pp. 1–7.

[19] M. Peuster, J. Kampmeyer, H. Karl, Containernet 2.0: A rapid prototyping platform for hybrid

service function chains, in: IEEE Conference on Network Softwarization and Workshops (NetSoft),500

2018, pp. 335–337. doi:10.1109/NETSOFT.2018.8459905.

[20] P. Ruiu, C. Fiandrino, P. Giaccone, A. Bianco, D. Kliazovich, P. Bouvry, On the energy-

proportionality of data center networks, IEEE Trans. on Sustainable Computing 2 (2) (2017)

197–210.

20

[21] D. Wischik, C. Raiciu, A. Greenhalgh, M. Handley, Design, implementation and evaluation of505

congestion control for multipath tcp, in: Proc. of USENIX NSDI, 2011, pp. 99–112.

[22] Y. Sani, A. Mauthe, C. Edwards, Adaptive bitrate selection: A survey, IEEE Communications

Surveys Tutorials 19 (4) (2017) 2985–3014. doi:10.1109/COMST.2017.2725241.

[23] K. Spiteri, R. Urgaonkar, R. K. Sitaraman, BOLA: Near-optimal bitrate adaptation for online

videos, in: Proc. IEEE INFOCOM, 2016, pp. 1–9. doi:10.1109/INFOCOM.2016.7524428.510

[24] B. Nguyen, A. Banerjee, V. Gopalakrishnan, S. Kasera, S. Lee, A. Shaikh, J. Van der Merwe,

Towards understanding TCP performance on LTE/EPC mobile networks, in: Proc. of ACM All

Things Cellular, 2014, pp. 41–46.

[25] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, V. Jacobson, BBR: Congestion-based congestion

control, Commun. ACM 60 (2) (2017) 58–66.515

[26] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Kouranov,

I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade,

R. Hamilton, V. Vasiliev, W.-T. Chang, Z. Shi, The QUIC transport protocol: Design and internet-

scale deployment, in: Proc. of ACM SIGCOMM, 2017, pp. 183–196. doi:10.1145/3098822.3098842.

[27] Q. De Coninck, O. Bonaventure, Multipath QUIC: Design and evaluation, in: Proc. of ACM520

CoNEXT, 2017, pp. 160–166. doi:10.1145/3143361.3143370.

[28] D. Laselva, D. Lopez-Perez, M. Rinne, T. Henttonen, 3GPP LTE-WLAN aggregation technologies:

Functionalities and performance comparison, IEEE Communications Magazine 56 (3) (2018)

195–203. doi:10.1109/MCOM.2018.1700449.

[29] B. Jin, S. Kim, D. Yun, H. Lee, W. Kim, Y. Yi, Aggregating LTE and Wi-Fi: Toward intra-cell525

fairness and high TCP performance, IEEE Transactions on Wireless Communications 16 (10)

(2017) 6295–6308. doi:10.1109/TWC.2017.2721935.

[30] S. Guo, J. Liu, Y. Yang, B. Xiao, Z. Li, Energy-efficient dynamic computation offloading and

cooperative task scheduling in mobile cloud computing, IEEE Transactions on Mobile Computing

18 (2) (2019) 319–333. doi:10.1109/TMC.2018.2831230.530

[31] M. Hu, L. Zhuang, D. Wu, Y. Zhou, X. Chen, L. Xiao, Learning driven computation offloading for

asymmetrically informed edge computing, IEEE Transactions on Parallel and Distributed Systems

(2019) 1–14doi:10.1109/TPDS.2019.2893925.

[32] R. d. R. Fontes, C. E. Rothenberg, Mininet-WiFi: A platform for hybrid physical-virtual software-

defined wireless networking research, in: Proc. of ACM SIGCOMM, 2016, pp. 607–608.535

21

[33] V. Mancuso, C. Vitale, R. Gupta, K. Rathi, A. Morelli, A prototyping methodology for sdn-

controlled lte using sdr (Dec 2014).

[34] A. Huang, N. Nikaein, Demo: LL-MEC A SDN-based MEC platform, in: Proc. of ACM MobiCom,

2017, pp. 483–485.

[35] K.Ramantas, E.Kartsakli, M.Irazabal, A. Antonopoulos, C. Verikoukis, Implementation of an SDN-540

enabled 5G Experimental Platform For Core and Radio Access Network Support, in: Interactive

Mobile Communication Technologies and Learning, Springer International Publishing, 2017, pp.

791–796.

[36] G. Garcia-Aviles, M. Gramaglia, P. Serrano, A. Banchs, POSENS: A practical open source

solution for end-to-end network slicing, IEEE Wireless Communications 25 (5) (2018) 30–37.545

doi:10.1109/MWC.2018.1800050.

[37] R. Mayer, L. Graser, H. Gupta, E. Saurez, U. Ramachandran, EmuFog: Extensible and scalable

emulation of large-scale fog computing infrastructures, in: Proc. IEEE Fog World Congress, 2017,

pp. 1–6. doi:10.1109/FWC.2017.8368525.

[38] J. Hasenburg, M. Grambow, E. Grünewald, S.Huk, D. Bermbach, MockFog: Emulating fog550

computing infrastructure in the cloud, in: Accepted in Proc. IEEE International Conference on

Fog Computing, 2019, pp. 1–6.

[39] Y. Zeng, M. Chao, R. Stoleru, EmuEdge: A hybrid emulator for reproducible and realistic edge

computing experiments, in: Accepted in Proc. IEEE International Conference on Fog Computing,

2019, pp. 1–6.555

Biographies

Claudio Fiandrino joined as a postdoctoral researcher the IMDEA Networks Institute in December

2016 right after having obtained his Ph.D. degree at the University of Luxembourg. He received

the Bachelor Degree in Ingegneria Telematica in 2010 and the Master Degree in Computer and

Communication Networks Engineering in 2012 both from Politecnico di Torino. Claudio also holds560

the 2016 SmartICT Certificate on standardization for business innovation from the joint program of

University of Luxembourg and ILNAS, the National Standardization Agency. Claudio has been awarded

with the Spanish Juan de la Cierva grant and the Best Paper Awards in IEEE Cloudnet 2016 and in

ACM WiNTECH 2018. He is member of IEEE and ACM, served as Publication and Web Chair at

IEEE CloudNet 2014, Publicity Chair in ACM/IEEE ANCS 2018, Workshop Co-Chair of MoCS 2019565

22

and TPC Co-Chair of IEEE CAMAD 2019. His primary research interests include multi-access edge

computing, ultra-reliable and low latency communications and mobile crowdsensing.

Alejandro Blanco Pizarro obtained his B.Sc. in Telecommunication Technologies Engineering from

Carlos III University of Madrid in October of 2015. In his last year, Alejandro was working in Everis as

a Junior Consultant. During the next two years, he continued his studies joining the Double Master’s570

Degree in Telecommunications Engineering and Multimedia and Communications. His final project of

M.Sc was focused on developing an scheduling algorithm in a Cloud RAN, where the computational

resources are limited. From September of 2017, Alejandro is working as PhD at IMDEA Networks.

His current research is focusing on analyzing and measuring cellular network to enhancement its

performance.575

Pablo Jimenéz Mateo holds two Bachelor degrees, one in Computational Mathematics and another

in Computer Engineering, both from Universitat Jaume I at Castellón de la Plana (Spain). He also holds

two Masters, one in Intelligent Systems from the same university and a MsC in Telecommunications

engineering from Universidad Carlos III at Madrid (Spain) where he is currently a PhD candidate

on Telecommunications Engineering. His research focus on mmWave networks, more specifically in580

transport protocols and medium access. Prior to his incorporation to IMDEA Networks his professional

experience has focused on several undergraduate internships: in “Generation of georeferenced alerts

based on the study of the interaction of users in social networks” (Big Data), “Design and development of

a self-organized system for emergency management traffic accesses on Castellón de la Plana” (Intelligent

systems) and “Development of an agent based distributed system for the analysis of real-time traffic”585

(Intelligent systems).

Carlos Andrés Ramiro is currently a MS student in the Universidad Politecnica de Madrid. He

performed his Bachelor thesis as an intern at IMDEA Networks Institute.

Norbert Ludant is a PhD student in the Information Assurance program at Northeastern University’s

College of Computer and Information Science, advised by Professor Guevara Noubir. He received a590

BS degree in Communication Systems Engineering in 2015, and MS degrees in Telecommunications

Engineering and Multimedia and Communications in 2017, from the University Carlos III de Madrid.

During these years he did internships both in industry, in Alcatel-Lucent, and in academia, at the

5G Innovation Centre, University of Surrey, where he was involved in large-scale antenna systems

research under an European Erasmus+ grant. He joined IMDEA Networks Institute in 2017, where he595

has worked on traffic profiling, network optimization, and anticipatory networking, all evaluated with

real traffic data. He also joined the Signal Processing Group at University Carlos III de Madrid in

2018, where he worked in novel approaches for channel coding. His research interests are in the area of

broadband wireless communications, signal processing, security, privacy, and new emerging wireless

technologies, among others.600

23

Joerg Widmer is Research Professor as well as Research Director of IMDEA Networks in Madrid,

Spain. His research focuses on wireless networks, ranging from extremely high frequency millimeter-wave

communication and MAC layer design to mobile network architectures. From 2005 to 2010, he was

manager of the Ubiquitous Networking Research Group at DOCOMO Euro-Labs in Munich, Germany,

leading several projects in the area of mobile and cellular networks. Before, he worked as post-doctoral605

researcher at EPFL, Switzerland on ultra-wide band communication and network coding. He was

a visiting researcher at the International Computer Science Institute in Berkeley, USA, University

College London, UK, and TU Darmstadt, Germany. Joerg Widmer authored more than 150 conference

and journal papers and three IETF RFCs, and holds 13 patents. He serves or served on the editorial

board of IEEE Transactions on Mobile Computing, IEEE Transactions on Communications, Elsevier610

Computer Networks and the program committees of several major conferences. He was awarded an

ERC consolidator grant, the Friedrich Wilhelm Bessel Research Award of the Alexander von Humboldt

Foundation, a Spanish Ramon y Cajal grant, as well as best paper awards at IEEE ICC, IEEE PIMRC,

IEEE WoWMoM, ICST WICON, IEEE MediaWiN, NGC, and the IEEE Communications Society Best

Tutorial Paper Award. He is senior member of IEEE and ACM.615

24

